These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28198677)

  • 21. MORC Domain Definition and Evolutionary Analysis of the MORC Gene Family in Green Plants.
    Dong W; Vannozzi A; Chen F; Hu Y; Chen Z; Zhang L
    Genome Biol Evol; 2018 Jul; 10(7):1730-1744. PubMed ID: 29982569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evolution of functional complexity within the β-amylase gene family in land plants.
    Thalmann M; Coiro M; Meier T; Wicker T; Zeeman SC; Santelia D
    BMC Evol Biol; 2019 Feb; 19(1):66. PubMed ID: 30819112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES domain) gene family in Malus domestica with a functional characterization of MdLBD11.
    Wang X; Zhang S; Su L; Liu X; Hao Y
    PLoS One; 2013; 8(2):e57044. PubMed ID: 23468909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution and divergence of SBP-box genes in land plants.
    Zhang SD; Ling LZ; Yi TS
    BMC Genomics; 2015 Oct; 16():787. PubMed ID: 26467431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera.
    Cao H; Liu CY; Liu CX; Zhao YL; Xu RR
    J Genet; 2016 Sep; 95(3):515-26. PubMed ID: 27659322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide analysis of PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) genes in plants reveals the eudicot-wide PDAT gene expansion and altered selective pressures acting on the core eudicot PDAT paralogs.
    Pan X; Peng FY; Weselake RJ
    Plant Physiol; 2015 Mar; 167(3):887-904. PubMed ID: 25585619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide analysis of the LBD family in rice: Gene functions, structure and evolution.
    Zhao D; Chen P; Chen Z; Zhang L; Wang Y; Xu L
    Comput Biol Med; 2023 Feb; 153():106452. PubMed ID: 36603440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events.
    Bowers JE; Chapman BA; Rong J; Paterson AH
    Nature; 2003 Mar; 422(6930):433-8. PubMed ID: 12660784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TCP transcription factors predate the emergence of land plants.
    Navaud O; Dabos P; Carnus E; Tremousaygue D; Hervé C
    J Mol Evol; 2007 Jul; 65(1):23-33. PubMed ID: 17568984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Step by step evolution of Indeterminate Domain (IDD) transcriptional regulators: from algae to angiosperms.
    Prochetto S; Reinheimer R
    Ann Bot; 2020 Jun; 126(1):85-101. PubMed ID: 32206771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution.
    Liu YY; Yang KZ; Wei XX; Wang XQ
    New Phytol; 2016 Nov; 212(3):730-744. PubMed ID: 27375201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants.
    Liu D; Sun W; Yuan Y; Zhang N; Hayward A; Liu Y; Wang Y
    Ann Bot; 2014 Jun; 113(7):1219-33. PubMed ID: 24812252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms.
    Kramer EM; Jaramillo MA; Di Stilio VS
    Genetics; 2004 Feb; 166(2):1011-23. PubMed ID: 15020484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights from ANA-grade angiosperms into the early evolution of CUP-SHAPED COTYLEDON genes.
    Vialette-Guiraud AC; Adam H; Finet C; Jasinski S; Jouannic S; Scutt CP
    Ann Bot; 2011 Jun; 107(9):1511-9. PubMed ID: 21320879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ancient WGD events as drivers of key innovations in angiosperms.
    Soltis PS; Soltis DE
    Curr Opin Plant Biol; 2016 Apr; 30():159-65. PubMed ID: 27064530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the LBD gene family in Brachypodium: a phylogenetic and transcriptional study.
    Gombos M; Zombori Z; Szécsényi M; Sándor G; Kovács H; Györgyey J
    Plant Cell Rep; 2017 Jan; 36(1):61-79. PubMed ID: 27686461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns.
    Waters ER; Aevermann BD; Sanders-Reed Z
    Cell Stress Chaperones; 2008; 13(2):127-42. PubMed ID: 18759000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure, functional evolution, and evolutionary trajectories of the H
    Zhang Y; Feng X; Wang L; Su Y; Chu Z; Sun Y
    BMC Genomics; 2020 Mar; 21(1):195. PubMed ID: 32122295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms.
    Ran JH; Shen TT; Wang MM; Wang XQ
    Proc Biol Sci; 2018 Jun; 285(1881):. PubMed ID: 29925623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An evolutionary view of functional diversity in family 1 glycosyltransferases.
    Yonekura-Sakakibara K; Hanada K
    Plant J; 2011 Apr; 66(1):182-93. PubMed ID: 21443631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.