These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28198812)

  • 1. Highly stretchable and shape-controllable three-dimensional antenna fabricated by "Cut-Transfer-Release" method.
    Yan Z; Pan T; Yao G; Liao F; Huang Z; Zhang H; Gao M; Zhang Y; Lin Y
    Sci Rep; 2017 Feb; 7():42227. PubMed ID: 28198812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable and reversibly deformable radio frequency antennas based on silver nanowires.
    Song L; Myers AC; Adams JJ; Zhu Y
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4248-53. PubMed ID: 24593878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic stretchable RF electronics.
    Cheng S; Wu Z
    Lab Chip; 2010 Dec; 10(23):3227-34. PubMed ID: 20877884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paper-Based Triboelectric Nanogenerators Made of Stretchable Interlocking Kirigami Patterns.
    Wu C; Wang X; Lin L; Guo H; Wang ZL
    ACS Nano; 2016 Apr; 10(4):4652-9. PubMed ID: 27058268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable conductive elastomer for wireless wearable communication applications.
    Chen Z; Xi J; Huang W; Yuen MMF
    Sci Rep; 2017 Sep; 7(1):10958. PubMed ID: 28887503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable 3D Wideband Dipole Antennas from Mechanical Assembly for On-Body Communication.
    Zhu J; Hu Z; Zhang S; Zhang X; Zhou H; Xing C; Guo H; Qiu D; Yang H; Song C; Cheng H
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12855-12862. PubMed ID: 35254805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Design for Stretchable Microstrip Antennas.
    Zhu J; Fox JJ; Yi N; Cheng H
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8867-8877. PubMed ID: 30758181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretchable Conductive Ink Based on Polysiloxane-Silver Composite and Its Application as a Frequency Reconfigurable Patch Antenna for Wearable Electronics.
    Ramli MR; Ibrahim S; Ahmad Z; Abidin ISZ; Ain MF
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28033-28042. PubMed ID: 31314485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled 3D buckling of silicon nanowires for stretchable electronics.
    Xu F; Lu W; Zhu Y
    ACS Nano; 2011 Jan; 5(1):672-8. PubMed ID: 21189041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial rigid response and softening transition of highly stretchable kirigami sheet materials.
    Isobe M; Okumura K
    Sci Rep; 2016 Apr; 6():24758. PubMed ID: 27117355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage.
    Zhang Y; Xu S; Fu H; Lee J; Su J; Hwang KC; Rogers JA; Huang Y
    Soft Matter; 2013; 9(33):8062-8070. PubMed ID: 25309616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and electronic transport characteristics of highly stretchable graphene kirigami.
    Mortazavi B; Lherbier A; Fan Z; Harju A; Rabczuk T; Charlier JC
    Nanoscale; 2017 Nov; 9(42):16329-16341. PubMed ID: 29051943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft Materials, Stretchable Mechanics, and Optimized Designs for Body-Wearable Compliant Antennas.
    Kim YS; Basir A; Herbert R; Kim J; Yoo H; Yeo WH
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3059-3067. PubMed ID: 31842536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable Micromotion Sensor with Enhanced Sensitivity Using Serpentine Layout.
    Yan Z; Pan T; Wang D; Li J; Jin L; Huang L; Jiang J; Qi Z; Zhang H; Gao M; Yang W; Lin Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12261-12271. PubMed ID: 30807090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helix Electrohydrodynamic Printing of Highly Aligned Serpentine Micro/Nanofibers.
    Duan Y; Ding Y; Xu Z; Huang Y; Yin Z
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Serpentine-Helix Combination for 3D Stretchable Electronics.
    Yan Z; Liu Y; Xiong J; Wang B; Dai L; Gao M; Pan T; Yang W; Lin Y
    Adv Mater; 2023 Jun; 35(23):e2210238. PubMed ID: 36896499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic serpentine antennas with designed mechanical tunability.
    Huang Y; Wang Y; Xiao L; Liu H; Dong W; Yin Z
    Lab Chip; 2014 Nov; 14(21):4205-12. PubMed ID: 25144304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic Reconfiguration Using Stretchable Mechanical Metamaterials.
    Sakovsky M; Negele J; Costantine J
    Adv Sci (Weinh); 2023 Feb; 10(6):e2203376. PubMed ID: 36599682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics.
    Feng D; Zhang H; Xu S; Tian L; Song N
    Nanotechnology; 2017 Mar; 28(11):115703. PubMed ID: 28195075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network.
    Duan S; Yang K; Wang Z; Chen M; Zhang L; Zhang H; Li C
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2187-92. PubMed ID: 26713456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.