These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28198844)

  • 41. Versatile control of geometric birefringence in elliptical hollow optical fiber.
    Jung Y; Han SR; Kim S; Paek UC; Oh K
    Opt Lett; 2006 Sep; 31(18):2681-3. PubMed ID: 16936856
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hollow core anti-resonant fiber with split cladding.
    Huang X; Qi W; Ho D; Yong KT; Luan F; Yoo S
    Opt Express; 2016 Apr; 24(7):7670-8. PubMed ID: 27137053
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modal analysis of antiresonant hollow core fibers using S
    Newkirk AV; Antonio-Lopez JE; Anderson J; Alvarez-Aguirre R; Eznaveh ZS; Lopez-Galmiche G; Amezcua-Correa R; Schülzgen A
    Opt Lett; 2016 Jul; 41(14):3277-80. PubMed ID: 27420514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers.
    Yu F; Xu M; Knight JC
    Opt Express; 2016 Jun; 24(12):12969-75. PubMed ID: 27410316
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion.
    Kim SE; Kim BH; Lee CG; Lee S; Oh K; Kee CS
    Opt Express; 2012 Jan; 20(2):1385-91. PubMed ID: 22274483
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polarization evolution in single-ring antiresonant hollow-core fibers.
    Jayakumar N; Sollapur R; Hoffmann A; Grigorova T; Hartung A; Schwuchow A; Bierlich J; Kobelke J; Schmidt MA; Spielmann C
    Appl Opt; 2018 Oct; 57(29):8529-8535. PubMed ID: 30461919
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-mode hollow-core photonic crystal fiber made from soft glass.
    Jiang X; Euser TG; Abdolvand A; Babic F; Tani F; Joly NY; Travers JC; Russell PS
    Opt Express; 2011 Aug; 19(16):15438-44. PubMed ID: 21934907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cladding defects in hollow core fibers for surface mode suppression and improved birefringence.
    Michieletto M; Lyngsø JK; Lægsgaard J; Bang O
    Opt Express; 2014 Sep; 22(19):23324-32. PubMed ID: 25321801
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simplified hollow-core photonic crystal fiber.
    Gérôme F; Jamier R; Auguste JL; Humbert G; Blondy JM
    Opt Lett; 2010 Apr; 35(8):1157-9. PubMed ID: 20410951
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polarization-maintaining fiber composed of an elliptical ring core and two circular air holes.
    Zhang X; Jiang Y; Xu Y; Chen R; Wang A; Ming H; Zhao W
    Appl Opt; 2019 Nov; 58(32):8865-8870. PubMed ID: 31873665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes.
    Vincetti L; Setti V
    Opt Express; 2012 Jun; 20(13):14350-61. PubMed ID: 22714496
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core.
    Kosolapov AF; Pryamikov AD; Biriukov AS; Shiryaev VS; Astapovich MS; Snopatin GE; Plotnichenko VG; Churbanov MF; Dianov EM
    Opt Express; 2011 Dec; 19(25):25723-8. PubMed ID: 22273964
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mode-selective coupling between few-mode fibers and buried channel waveguides.
    Wu Y; Chiang KS
    Opt Express; 2016 Dec; 24(26):30108-30123. PubMed ID: 28059289
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Higher-order mode suppression in chalcogenide negative curvature fibers.
    Wei C; Kuis RA; Chenard F; Menyuk CR; Hu J
    Opt Express; 2015 Jun; 23(12):15824-32. PubMed ID: 26193561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression.
    Wang YY; Peng X; Alharbi M; Dutin CF; Bradley TD; Gérôme F; Mielke M; Booth T; Benabid F
    Opt Lett; 2012 Aug; 37(15):3111-3. PubMed ID: 22859102
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications.
    Jaworski P; Yu F; Maier RR; Wadsworth WJ; Knight JC; Shephard JD; Hand DP
    Opt Express; 2013 Sep; 21(19):22742-53. PubMed ID: 24104161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct performance comparison of antiresonant and Kagome hollow-core fibers in mid-IR wavelength modulation spectroscopy of ethane.
    Jaworski P; Wu D; Yu F; Krzempek K
    Opt Express; 2023 Jul; 31(15):24810-24820. PubMed ID: 37475299
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Composite material hollow antiresonant fibers.
    Belardi W; De Lucia F; Poletti F; Sazio PJ
    Opt Lett; 2017 Jul; 42(13):2535-2538. PubMed ID: 28957278
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phase-matched four-wave mixing of sub-100-TW/ cm2 femtosecond laser pulses in isolated air-guided modes of a hollow photonic-crystal fiber.
    Konorov SO; Serebryannikov EE; Akimov DA; Ivanov AA; Alfimov MV; Zheltikov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066625. PubMed ID: 15697544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet.
    Hartung A; Kobelke J; Schwuchow A; Wondraczek K; Bierlich J; Popp J; Frosch T; Schmidt MA
    Opt Express; 2015 Feb; 23(3):2557-65. PubMed ID: 25836120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.