These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28198846)

  • 1. Femtosecond two-photon laser-induced fluorescence of krypton for high-speed flow imaging.
    Wang Y; Capps C; Kulatilaka WD
    Opt Lett; 2017 Feb; 42(4):711-714. PubMed ID: 28198846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence.
    Li B; Li X; Zhang D; Gao Q; Yao M; Li Z
    Opt Express; 2017 Oct; 25(21):25809-25818. PubMed ID: 29041244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixture-fraction imaging at 1  kHz using femtosecond laser-induced fluorescence of krypton.
    Richardson DR; Jiang N; Stauffer HU; Kearney SP; Roy S; Gord JR
    Opt Lett; 2017 Sep; 42(17):3498-3501. PubMed ID: 28957072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic investigation of high-pressure femtosecond two-photon laser-induced fluorescence of carbon monoxide up to 20  bar.
    Wang Y; Kulatilaka WD
    Appl Opt; 2019 Apr; 58(10):C23-C29. PubMed ID: 31045027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of femtosecond and nanosecond two-photon-absorption laser-induced fluorescence of krypton.
    Grib SW; Hsu PS; Stauffer HU; Carter CD; Roy S
    Appl Opt; 2019 Sep; 58(27):7621-7627. PubMed ID: 31674418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-photon cross-section calculations for krypton in the 190-220  nm range.
    Shekhtman D; Mustafa MA; Parziale NJ
    Appl Opt; 2020 Dec; 59(34):10826-10837. PubMed ID: 33361903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 100  kHz krypton-based flow tagging velocimetry in a high-speed flow.
    Grib SW; Jiang N; Hsu PS; Stauffer HU; Felver JJ; Roy S; Schumaker SA
    Appl Opt; 2021 Feb; 60(6):1615-1622. PubMed ID: 33690497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Krypton tagging velocimetry of an underexpanded jet.
    Parziale NJ; Smith MS; Marineau EC
    Appl Opt; 2015 Jun; 54(16):5094-101. PubMed ID: 26192670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses.
    Kantsyrev VL; Schultz KA; Shlyaptseva VV; Petrov GM; Safronova AS; Petkov EE; Moschella JJ; Shrestha I; Cline W; Wiewior P; Chalyy O
    Phys Rev E; 2016 Nov; 94(5-1):053203. PubMed ID: 27967059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon excited fluorescence enhancement with broadband versus tunable femtosecond laser pulse excitation.
    Wang C; Yeh AT
    J Biomed Opt; 2012 Feb; 17(2):025003. PubMed ID: 22463029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of a two-line Kr PLIF thermometry technique for gaseous combustion applications.
    Zelenak D; Narayanaswamy V
    Opt Lett; 2019 Jan; 44(2):367-370. PubMed ID: 30644901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 100  kHz krypton planar laser-induced fluorescence imaging.
    Grib SW; Hsu PS; Jiang N; Felver JJ; Schumaker SA; Carter CD; Roy S
    Opt Lett; 2020 Jul; 45(14):3832-3835. PubMed ID: 32667296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot-electron influence on L-shell spectra of multicharged Kr ions generated in clusters irradiated by femtosecond laser pulses.
    Hansen SB; Shlyaptseva AS; Faenov AY; Skobelev IY; Magunov AI; Pikuz TA; Blasco F; Dorchies F; Stenz C; Salin F; Auguste T; Dobosz S; Monot P; D' Oliveira P; Hulin S; Safronova UI; Fournier KB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046412. PubMed ID: 12443335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-photon-excited laser-induced fluorescence detection of atomic hydrogen in flames.
    Jain A; Wang Y; Kulatilaka WD
    Opt Lett; 2019 Dec; 44(24):5945-5948. PubMed ID: 32628192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kr-PLIF for scalar imaging in supersonic flows.
    Narayanaswamy V; Burns R; Clemens NT
    Opt Lett; 2011 Nov; 36(21):4185-7. PubMed ID: 22048359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-induced thermal grating spectroscopy based on femtosecond laser multi-photon absorption.
    Ruchkina M; Hot D; Ding P; Hosseinnia A; Bengtsson PE; Li Z; Bood J; Sahlberg AL
    Sci Rep; 2021 May; 11(1):9829. PubMed ID: 33972614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sampling measurement of soft-x-ray-pulse shapes by femtosecond sequential ionization of Kr+ in an intense laser field.
    Oguri K; Nishikawa T; Ozaki T; Nakano H
    Opt Lett; 2004 Jun; 29(11):1279-81. PubMed ID: 15209271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond Single-Pulse and Orthogonal Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS): Femtogram Mass Detection and Chemical Imaging with Micrometer Spatial Resolution.
    Giannakaris N; Haider A; Ahamer CM; Grünberger S; Trautner S; Pedarnig JD
    Appl Spectrosc; 2022 Aug; 76(8):926-936. PubMed ID: 34494912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of Two-Photon eGFP Bleaching on Femtosecond Pulse Spectral Amplitude and Phase.
    Graham DJ; Tseng SF; Hsieh JT; Chen DJ; Alexandrakis G
    J Fluoresc; 2015 Nov; 25(6):1775-85. PubMed ID: 26411799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.