BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2819951)

  • 1. Magnetic fields and stress: day-night differences.
    Kavaliers M; Ossenkopp KP
    Prog Neuropsychopharmacol Biol Psychiatry; 1987; 11(2-3):279-86. PubMed ID: 2819951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Day-night rhythms of opioid and non-opioid stress-induced analgesia: differential inhibitory effects of exposure to magnetic fields.
    Kavaliers M; Ossenkopp KP
    Pain; 1988 Feb; 32(2):223-229. PubMed ID: 3362558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress-induced opioid analgesia and activity in mice: inhibitory influences of exposure to magnetic fields.
    Kavaliers M; Ossenkopp KP
    Psychopharmacology (Berl); 1986; 89(4):440-3. PubMed ID: 3092274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Day-night rhythms in the inhibitory effects of 60 Hz magnetic fields on opiate-mediated 'analgesic' behaviors of the land snail, Cepaea nemoralis.
    Kavaliers M; Ossenkopp KP; Lipa SM
    Brain Res; 1990 May; 517(1-2):276-82. PubMed ID: 2375996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphine-induced analgesia and exposure to low-intensity 60-Hz magnetic fields: inhibition of nocturnal analgesia in mice is a function of magnetic field intensity.
    Ossenkopp KP; Kavaliers M
    Brain Res; 1987 Aug; 418(2):356-60. PubMed ID: 3676716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic fields abolish the enhanced nocturnal analgesic response to morphine in mice.
    Kavaliers M; Ossenkopp KP; Hirst M
    Physiol Behav; 1984 Feb; 32(2):261-4. PubMed ID: 6538981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opioid and non-opioid mechanisms of stress analgesia: lack of cross-tolerance between stressors.
    Terman GW; Lewis JW; Liebeskind JC
    Brain Res; 1983 Jan; 260(1):147-50. PubMed ID: 6297681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of stress-induced analgesia but not of exogenous opioid effects in mice lacking CB1 receptors.
    Valverde O; Ledent C; Beslot F; Parmentier M; Roques BP
    Eur J Neurosci; 2000 Feb; 12(2):533-9. PubMed ID: 10712632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons between warm and cold water swim stress in mice.
    O'Connor P; Chipkin RE
    Life Sci; 1984 Aug; 35(6):631-9. PubMed ID: 6589457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in ethanol drinking between mice selected for high and low swim stress-induced analgesia.
    Sacharczuk M; Juszczak G; Sliwa AT; Tymosiak-Zielinska A; Lisowski P; Jaszczak K; Pluta R; Lipkowski A; Sadowski B; Swiergiel AH
    Alcohol; 2008 Sep; 42(6):487-92. PubMed ID: 18760717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to time varying magnetic fields associated with magnetic resonance imaging reduces fentanyl-induced analgesia in mice.
    Teskey GC; Prato FS; Ossenkopp KP; Kavaliers M
    Bioelectromagnetics; 1988; 9(2):167-74. PubMed ID: 2837250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opioid and non-opioid NMDA-mediated predator-induced analgesia in mice and the effects of parasitic infection.
    Kavaliers M; Colwell DD; Perrot-Sinal TS
    Brain Res; 1997 Aug; 766(1-2):11-8. PubMed ID: 9359582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptide FF and related peptides attenuates warm-, but not cold-water swim stress-induced analgesia in mice.
    Li N; Han ZL; Fang Q; Wang ZL; Tang HZ; Ren H; Wang R
    Behav Brain Res; 2012 Aug; 233(2):428-33. PubMed ID: 22659392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral opioid receptors mediating antinociception in inflammation. Evidence for activation by enkephalin-like opioid peptides after cold water swim stress.
    Parsons CG; Herz A
    J Pharmacol Exp Ther; 1990 Nov; 255(2):795-802. PubMed ID: 2173759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60-Hz magnetic fields in the land snail.
    Kavaliers M; Choleris E; Prato FS; Ossenkopp K
    Brain Res; 1998 Oct; 809(1):50-7. PubMed ID: 9795129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of NTS2 receptors in stress-induced analgesia.
    Lafrance M; Roussy G; Belleville K; Maeno H; Beaudet N; Wada K; Sarret P
    Neuroscience; 2010 Mar; 166(2):639-52. PubMed ID: 20035838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naloxone hyperalgesia and stress-induced analgesia in rats.
    Coderre TJ; Rollman GB
    Life Sci; 1983 May; 32(18):2139-46. PubMed ID: 6843288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroendocrine mediated effects of electromagnetic-field exposure: possible role of the pineal gland.
    Wilson BW; Stevens RG; Anderson LE
    Life Sci; 1989; 45(15):1319-32. PubMed ID: 2677573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress analgesia: the opioid analgesia of long swims suppresses the non-opioid analgesia induced by short swims in mice.
    Tierney G; Carmody J; Jamieson D
    Pain; 1991 Jul; 46(1):89-95. PubMed ID: 1896213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801 blocks non-opioid stress-induced analgesia. I. Comparison of opiate receptor-deficient and opiate receptor-rich strains of mice.
    Marek P; Page GG; Ben-Eliyahu S; Liebeskind JC
    Brain Res; 1991 Jun; 551(1-2):293-6. PubMed ID: 1655162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.