These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
844 related articles for article (PubMed ID: 28199983)
1. A versatile system for rapid multiplex genome-edited CAR T cell generation. Ren J; Zhang X; Liu X; Fang C; Jiang S; June CH; Zhao Y Oncotarget; 2017 Mar; 8(10):17002-17011. PubMed ID: 28199983 [TBL] [Abstract][Full Text] [Related]
2. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Ren J; Liu X; Fang C; Jiang S; June CH; Zhao Y Clin Cancer Res; 2017 May; 23(9):2255-2266. PubMed ID: 27815355 [No Abstract] [Full Text] [Related]
3. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Rupp LJ; Schumann K; Roybal KT; Gate RE; Ye CJ; Lim WA; Marson A Sci Rep; 2017 Apr; 7(1):737. PubMed ID: 28389661 [TBL] [Abstract][Full Text] [Related]
4. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells. Hu B; Zou Y; Zhang L; Tang J; Niedermann G; Firat E; Huang X; Zhu X Hum Gene Ther; 2019 Apr; 30(4):446-458. PubMed ID: 29706119 [TBL] [Abstract][Full Text] [Related]
5. CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy. Liu X; Zhao Y Curr Res Transl Med; 2018 May; 66(2):39-42. PubMed ID: 29691200 [TBL] [Abstract][Full Text] [Related]
6. Building Potent Chimeric Antigen Receptor T Cells With CRISPR Genome Editing. Liu J; Zhou G; Zhang L; Zhao Q Front Immunol; 2019; 10():456. PubMed ID: 30941126 [TBL] [Abstract][Full Text] [Related]
7. Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells. Glaser V; Flugel C; Kath J; Du W; Drosdek V; Franke C; Stein M; Pruß A; Schmueck-Henneresse M; Volk HD; Reinke P; Wagner DL Genome Biol; 2023 Apr; 24(1):89. PubMed ID: 37095570 [TBL] [Abstract][Full Text] [Related]
8. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Mollanoori H; Shahraki H; Rahmati Y; Teimourian S Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221 [TBL] [Abstract][Full Text] [Related]
9. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Ren J; Zhao Y Protein Cell; 2017 Sep; 8(9):634-643. PubMed ID: 28434148 [TBL] [Abstract][Full Text] [Related]
10. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Dimitri A; Herbst F; Fraietta JA Mol Cancer; 2022 Mar; 21(1):78. PubMed ID: 35303871 [TBL] [Abstract][Full Text] [Related]
11. Protocol for Efficient Generation of Chimeric Antigen Receptor T Cells with Multiplexed Gene Silencing by Epigenome Editing. Azcona MSR; Mussolino C Methods Mol Biol; 2024; 2842():209-223. PubMed ID: 39012598 [TBL] [Abstract][Full Text] [Related]
12. Lenalidomide enhances the function of chimeric antigen receptor T cells against the epidermal growth factor receptor variant III by enhancing immune synapses. Kuramitsu S; Ohno M; Ohka F; Shiina S; Yamamichi A; Kato A; Tanahashi K; Motomura K; Kondo G; Kurimoto M; Senga T; Wakabayashi T; Natsume A Cancer Gene Ther; 2015 Oct; 22(10):487-95. PubMed ID: 26450624 [TBL] [Abstract][Full Text] [Related]
13. Long Terminal Repeat CRISPR-CAR-Coupled "Universal" T Cells Mediate Potent Anti-leukemic Effects. Georgiadis C; Preece R; Nickolay L; Etuk A; Petrova A; Ladon D; Danyi A; Humphryes-Kirilov N; Ajetunmobi A; Kim D; Kim JS; Qasim W Mol Ther; 2018 May; 26(5):1215-1227. PubMed ID: 29605708 [TBL] [Abstract][Full Text] [Related]
14. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Hu W; Zi Z; Jin Y; Li G; Shao K; Cai Q; Ma X; Wei F Cancer Immunol Immunother; 2019 Mar; 68(3):365-377. PubMed ID: 30523370 [TBL] [Abstract][Full Text] [Related]
15. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Eyquem J; Mansilla-Soto J; Giavridis T; van der Stegen SJ; Hamieh M; Cunanan KM; Odak A; Gönen M; Sadelain M Nature; 2017 Mar; 543(7643):113-117. PubMed ID: 28225754 [TBL] [Abstract][Full Text] [Related]
16. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. Choi BD; Yu X; Castano AP; Darr H; Henderson DB; Bouffard AA; Larson RC; Scarfò I; Bailey SR; Gerhard GM; Frigault MJ; Leick MB; Schmidts A; Sagert JG; Curry WT; Carter BS; Maus MV J Immunother Cancer; 2019 Nov; 7(1):304. PubMed ID: 31727131 [TBL] [Abstract][Full Text] [Related]
17. Generating universal anti-CD19 CAR T cells with a defined memory phenotype by CRISPR/Cas9 editing and safety evaluation of the transcriptome. Pavlovic K; Carmona-Luque M; Corsi GI; Maldonado-Pérez N; Molina-Estevez FJ; Peralbo-Santaella E; Cortijo-Gutiérrez M; Justicia-Lirio P; Tristán-Manzano M; Ronco-Díaz V; Ballesteros-Ribelles A; Millán-López A; Heredia-Velázquez P; Fuster-García C; Cathomen T; Seemann SE; Gorodkin J; Martin F; Herrera C; Benabdellah K Front Immunol; 2024; 15():1401683. PubMed ID: 38868778 [TBL] [Abstract][Full Text] [Related]
18. CRISPR/Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy. Huang D; Miller M; Ashok B; Jain S; Peppas NA Adv Drug Deliv Rev; 2020; 158():17-35. PubMed ID: 32707148 [TBL] [Abstract][Full Text] [Related]
19. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells. Morgan MA; Büning H; Sauer M; Schambach A Front Immunol; 2020; 11():1965. PubMed ID: 32903482 [TBL] [Abstract][Full Text] [Related]
20. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Razeghian E; Nasution MKM; Rahman HS; Gardanova ZR; Abdelbasset WK; Aravindhan S; Bokov DO; Suksatan W; Nakhaei P; Shariatzadeh S; Marofi F; Yazdanifar M; Shamlou S; Motavalli R; Khiavi FM Stem Cell Res Ther; 2021 Jul; 12(1):428. PubMed ID: 34321099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]