These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28200073)

  • 41. Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction.
    de Oliveira SHP; Law EC; Shi J; Deane CM
    Bioinformatics; 2018 Apr; 34(7):1132-1140. PubMed ID: 29136098
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An improved approach to infer protein-protein interaction based on a hierarchical vector space model.
    Zhang J; Jia K; Jia J; Qian Y
    BMC Bioinformatics; 2018 Apr; 19(1):161. PubMed ID: 29699476
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Graph sharpening plus graph integration: a synergy that improves protein functional classification.
    Shin H; Lisewski AM; Lichtarge O
    Bioinformatics; 2007 Dec; 23(23):3217-24. PubMed ID: 17977886
    [TBL] [Abstract][Full Text] [Related]  

  • 44. deepSimDEF: deep neural embeddings of gene products and gene ontology terms for functional analysis of genes.
    Pesaranghader A; Matwin S; Sokolova M; Grenier JC; Beiko RG; Hussin J
    Bioinformatics; 2022 May; 38(11):3051-3061. PubMed ID: 35536192
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SANA NetGO: a combinatorial approach to using Gene Ontology (GO) terms to score network alignments.
    Hayes WB; Mamano N
    Bioinformatics; 2018 Apr; 34(8):1345-1352. PubMed ID: 29228175
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GLIDE: combining local methods and diffusion state embeddings to predict missing interactions in biological networks.
    Devkota K; Murphy JM; Cowen LJ
    Bioinformatics; 2020 Jul; 36(Suppl_1):i464-i473. PubMed ID: 32657369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome-scale prediction of moonlighting proteins using diverse protein association information.
    Khan IK; Kihara D
    Bioinformatics; 2016 Aug; 32(15):2281-8. PubMed ID: 27153604
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gene ontology based transfer learning for protein subcellular localization.
    Mei S; Fei W; Zhou S
    BMC Bioinformatics; 2011 Feb; 12():44. PubMed ID: 21284890
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NoGOA: predicting noisy GO annotations using evidences and sparse representation.
    Yu G; Lu C; Wang J
    BMC Bioinformatics; 2017 Jul; 18(1):350. PubMed ID: 28732468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein function prediction based on data fusion and functional interrelationship.
    Meng J; Wekesa JS; Shi GL; Luan YS
    Math Biosci; 2016 Apr; 274():25-32. PubMed ID: 26869536
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling multi-scale data via a network of networks.
    Gu S; Jiang M; Guzzi PH; Milenković T
    Bioinformatics; 2022 Apr; 38(9):2544-2553. PubMed ID: 35238343
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm.
    Luo H; Wang J; Li M; Luo J; Peng X; Wu FX; Pan Y
    Bioinformatics; 2016 Sep; 32(17):2664-71. PubMed ID: 27153662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional annotation of hierarchical modularity.
    Padmanabhan K; Wang K; Samatova NF
    PLoS One; 2012; 7(4):e33744. PubMed ID: 22496762
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations.
    Zong N; Kim H; Ngo V; Harismendy O
    Bioinformatics; 2017 Aug; 33(15):2337-2344. PubMed ID: 28430977
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functionally guided alignment of protein interaction networks for module detection.
    Ali W; Deane CM
    Bioinformatics; 2009 Dec; 25(23):3166-73. PubMed ID: 19797409
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.
    Zhao Y; Fu G; Wang J; Guo M; Yu G
    Genomics; 2019 May; 111(3):334-342. PubMed ID: 29477548
    [TBL] [Abstract][Full Text] [Related]  

  • 57. How and when should interactome-derived clusters be used to predict functional modules and protein function?
    Song J; Singh M
    Bioinformatics; 2009 Dec; 25(23):3143-50. PubMed ID: 19770263
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hidden information revealed by optimal community structure from a protein-complex bipartite network improves protein function prediction.
    Lee J; Lee J
    PLoS One; 2013; 8(4):e60372. PubMed ID: 23577106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interspecies gene function prediction using semantic similarity.
    Yu G; Luo W; Fu G; Wang J
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):121. PubMed ID: 28155711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.