These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2820056)

  • 1. Chemical conversion of a DNA-binding protein into a site-specific nuclease.
    Chen CH; Sigman DS
    Science; 1987 Sep; 237(4819):1197-201. PubMed ID: 2820056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of DNA binding proteins into site-specific cutters: reactivity of Trp repressor-1,10-phenanthroline chimeras.
    Landgraf R; Pan C; Sutton C; Pearson L; Sigman DS
    Protein Eng; 1996 Jul; 9(7):603-10. PubMed ID: 8844832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming the Escherichia coli Trp repressor into a site-specific nuclease.
    Sutton CL; Mazumder A; Chen CH; Sigman DS
    Biochemistry; 1993 Apr; 32(16):4225-30. PubMed ID: 8476849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli tryptophan repressor binds multiple sites within the aroH and trp operators.
    Kumamoto AA; Miller WG; Gunsalus RP
    Genes Dev; 1987 Aug; 1(6):556-64. PubMed ID: 3315853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclease activity of 1,10-phenanthroline-copper. New conjugates with low molecular weight targeting ligands.
    Chen CH; Mazumder A; Constant JF; Sigman DS
    Bioconjug Chem; 1993; 4(1):69-77. PubMed ID: 7679292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA conformational changes associated with the cooperative binding of cI-repressor of bacteriophage lambda to OR.
    Strahs D; Brenowitz M
    J Mol Biol; 1994 Dec; 244(5):494-510. PubMed ID: 7990137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclease activity of 1,10-phenanthroline-copper in study of protein-DNA interactions.
    Sigman DS; Kuwabara MD; Chen CH; Bruice TW
    Methods Enzymol; 1991; 208():414-33. PubMed ID: 1779842
    [No Abstract]   [Full Text] [Related]  

  • 8. Dependence of trp repressor-operator affinity, stoichiometry, and apparent cooperativity on DNA sequence and size.
    Liu YC; Matthews KS
    J Biol Chem; 1993 Nov; 268(31):23239-49. PubMed ID: 8226846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A site-specific endonuclease derived from a mutant Trp repressor with altered DNA-binding specificity.
    Pfau J; Arvidson DN; Youderian P; Pearson LL; Sigman DS
    Biochemistry; 1994 Sep; 33(37):11391-403. PubMed ID: 7727390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trp repressor interaction with bromodeoxyuridine-substituted operators alters UV-induced perturbation pattern in a sequence-dependent manner.
    Liu YC; Matthews KS
    Biochemistry; 1993 Oct; 32(40):10532-42. PubMed ID: 8399199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the targeted chemical nuclease activity of 1,10-phenanthroline-copper by ligand modification.
    Gallagher J; Chen CH; Pan CQ; Perrin DM; Cho YM; Sigman DS
    Bioconjug Chem; 1996; 7(4):413-20. PubMed ID: 8853454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyl radical footprinting: a high-resolution method for mapping protein-DNA contacts.
    Tullius TD; Dombroski BA; Churchill ME; Kam L
    Methods Enzymol; 1987; 155():537-58. PubMed ID: 2828876
    [No Abstract]   [Full Text] [Related]  

  • 13. DNA dynamic flexibility and protein recognition: differential stimulation by bacterial histone-like protein HU.
    Flashner Y; Gralla JD
    Cell; 1988 Aug; 54(5):713-21. PubMed ID: 3044609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA specificity determinants of Escherichia coli tryptophan repressor binding.
    Bass S; Sugiono P; Arvidson DN; Gunsalus RP; Youderian P
    Genes Dev; 1987 Aug; 1(6):565-72. PubMed ID: 3315854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trp repressor-operator binding: NMR and electrophoretic mobility shift studies of the effect of DNA sequence and corepressor binding on two Trp repressor-operator complexes.
    Jaseja M; Jeeves M; Hyde EI
    Biochemistry; 2002 Dec; 41(50):14866-78. PubMed ID: 12475235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of trp repressor-operator interaction by filter binding.
    Klig LS; Crawford IP; Yanofsky C
    Nucleic Acids Res; 1987 Jul; 15(13):5339-51. PubMed ID: 3299270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple disordered loops function in corepressor-induced dimerization of the biotin repressor.
    Kwon K; Streaker ED; Ruparelia S; Beckett D
    J Mol Biol; 2000 Dec; 304(5):821-33. PubMed ID: 11124029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes.
    Kuwabara MD; Sigman DS
    Biochemistry; 1987 Nov; 26(23):7234-8. PubMed ID: 3322397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-specific scission of DNA by the chemical nuclease activity of 1,10-phenanthroline-copper(I) targeted by RNA.
    Chen CB; Gorin MB; Sigman DS
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4206-10. PubMed ID: 7683427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.