These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 2820061)

  • 1. Global flexibility in a sensory receptor: a site-directed cross-linking approach.
    Falke JJ; Koshland DE
    Science; 1987 Sep; 237(4822):1596-600. PubMed ID: 2820061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor.
    Chervitz SA; Falke JJ
    J Biol Chem; 1995 Oct; 270(41):24043-53. PubMed ID: 7592603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor.
    Danielson MA; Bass RB; Falke JJ
    J Biol Chem; 1997 Dec; 272(52):32878-88. PubMed ID: 9407066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane signaling by the aspartate receptor: engineered disulfides reveal static regions of the subunit interface.
    Chervitz SA; Lin CM; Falke JJ
    Biochemistry; 1995 Aug; 34(30):9722-33. PubMed ID: 7626643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disulfide cross-linking studies of the transmembrane regions of the aspartate sensory receptor of Escherichia coli.
    Lynch BA; Koshland DE
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10402-6. PubMed ID: 1660136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed cross-linking. Establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis.
    Milligan DL; Koshland DE
    J Biol Chem; 1988 May; 263(13):6268-75. PubMed ID: 2834370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that the adaptation region of the aspartate receptor is a dynamic four-helix bundle: cysteine and disulfide scanning studies.
    Winston SE; Mehan R; Falke JJ
    Biochemistry; 2005 Sep; 44(38):12655-66. PubMed ID: 16171380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: applications to soluble and transmembrane receptors of bacterial chemotaxis.
    Bass RB; Butler SL; Chervitz SA; Gloor SL; Falke JJ
    Methods Enzymol; 2007; 423():25-51. PubMed ID: 17609126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor. Structural comparison to the cross-linked mutant forms and conformational changes upon ligand binding.
    Yeh JI; Biemann HP; Pandit J; Koshland DE; Kim SH
    J Biol Chem; 1993 May; 268(13):9787-92. PubMed ID: 8486661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella typhimurium.
    Scott WG; Milligan DL; Milburn MV; Privé GG; Yeh J; Koshland DE; Kim SH
    J Mol Biol; 1993 Jul; 232(2):555-73. PubMed ID: 8345523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor.
    Pakula AA; Simon MI
    Proc Natl Acad Sci U S A; 1992 May; 89(9):4144-8. PubMed ID: 1315053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aspartate receptor cytoplasmic domain: in situ chemical analysis of structure, mechanism and dynamics.
    Bass RB; Falke JJ
    Structure; 1999 Jul; 7(7):829-40. PubMed ID: 10425684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanism of transmembrane signaling by the aspartate receptor: a model.
    Chervitz SA; Falke JJ
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2545-50. PubMed ID: 8637911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies.
    Bass RB; Coleman MD; Falke JJ
    Biochemistry; 1999 Jul; 38(29):9317-27. PubMed ID: 10413506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for transmembrane signalling by the aspartate receptor based on random-cassette mutagenesis and site-directed disulfide cross-linking.
    Maruyama IN; Mikawa YG; Maruyama HI
    J Mol Biol; 1995 Nov; 253(4):530-46. PubMed ID: 7473732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching.
    Coleman MD; Bass RB; Mehan RS; Falke JJ
    Biochemistry; 2005 May; 44(21):7687-95. PubMed ID: 15909983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of mutations in the transmembrane region of the aspartate chemoreceptor in Escherichia coli.
    Oosawa K; Simon M
    Proc Natl Acad Sci U S A; 1986 Sep; 83(18):6930-4. PubMed ID: 3018752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity.
    Starrett DJ; Falke JJ
    Biochemistry; 2005 Feb; 44(5):1550-60. PubMed ID: 15683239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of Escherichia coli chemosensory receptors. Engineered sulfhydryl studies.
    Careaga CL; Falke JJ
    Biophys J; 1992 Apr; 62(1):209-16; discussion 217-9. PubMed ID: 1318100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational changes in the cytoplasmic domain of the Escherichia coli aspartate receptor upon adaptive methylation.
    Le Moual H; Quang T; Koshland DE
    Biochemistry; 1998 Oct; 37(42):14852-9. PubMed ID: 9778360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.