These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2820061)

  • 21. Conformational changes in the cytoplasmic domain of the Escherichia coli aspartate receptor upon adaptive methylation.
    Le Moual H; Quang T; Koshland DE
    Biochemistry; 1998 Oct; 37(42):14852-9. PubMed ID: 9778360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor.
    Trammell MA; Falke JJ
    Biochemistry; 1999 Jan; 38(1):329-36. PubMed ID: 9890914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of a bacterial sensory receptor. A site-directed sulfhydryl study.
    Falke JJ; Dernburg AF; Sternberg DA; Zalkin N; Milligan DL; Koshland DE
    J Biol Chem; 1988 Oct; 263(29):14850-8. PubMed ID: 3049592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cysteine and disulfide scanning reveals two amphiphilic helices in the linker region of the aspartate chemoreceptor.
    Butler SL; Falke JJ
    Biochemistry; 1998 Jul; 37(30):10746-56. PubMed ID: 9692965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmembrane signalling and the aspartate receptor.
    Scott WG; Stoddard BL
    Structure; 1994 Sep; 2(9):877-87. PubMed ID: 7812719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The fifth Datta Lecture. Structural similarities between the aspartate receptor of bacterial chemotaxis and the trp repressor of E. coli. Implications for transmembrane signaling.
    Lynch BA; Koshland DE
    FEBS Lett; 1992 Jul; 307(1):3-9. PubMed ID: 1322324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cytoplasmic fragment of the aspartate receptor displays globally dynamic behavior.
    Seeley SK; Weis RM; Thompson LK
    Biochemistry; 1996 Apr; 35(16):5199-206. PubMed ID: 8611504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of the tip-encoded receptor in bacterial sensing.
    Russo AF; Koshland DE
    J Bacteriol; 1986 Jan; 165(1):276-82. PubMed ID: 3001027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A disulfide bonding interaction role for cysteines in the extracellular domain of the thyrotropin-releasing hormone receptor.
    Cook JV; McGregor A; Lee T; Milligan G; Eidne KA
    Endocrinology; 1996 Jul; 137(7):2851-8. PubMed ID: 8770906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting the conformational change of transmembrane signaling in a bacterial chemoreceptor by measuring effects on disulfide cross-linking in vivo.
    Hughson AG; Hazelbauer GL
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11546-51. PubMed ID: 8876172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aspartate receptors of Escherichia coli and Salmonella typhimurium bind ligand with negative and half-of-the-sites cooperativity.
    Biemann HP; Koshland DE
    Biochemistry; 1994 Jan; 33(3):629-34. PubMed ID: 8292590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linking functional domains of the human insulin receptor with the bacterial aspartate receptor.
    Ellis L; Morgan DO; Koshland DE; Clauser E; Moe GR; Bollag G; Roth RA; Rutter WJ
    Proc Natl Acad Sci U S A; 1986 Nov; 83(21):8137-41. PubMed ID: 3022282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-linking and disulfide bond formation of introduced cysteine residues suggest a modified model for the tertiary structure of URF13 in the pore-forming oligomers.
    Rhoads DM; Brunner-Neuenschwander B; Levings CS; Siedow JN
    Arch Biochem Biophys; 1998 Jun; 354(1):158-64. PubMed ID: 9633611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor.
    Hamdan FF; Ward SD; Siddiqui NA; Bloodworth LM; Wess J
    Biochemistry; 2002 Jun; 41(24):7647-58. PubMed ID: 12056896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diagnostic cross-linking of paired cysteine pairs demonstrates homologous structures for two chemoreceptor domains with low sequence identity.
    Lai WC; Peach ML; Lybrand TP; Hazelbauer GL
    Protein Sci; 2006 Jan; 15(1):94-101. PubMed ID: 16322572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo.
    Lee GF; Lebert MR; Lilly AA; Hazelbauer GL
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3391-5. PubMed ID: 7724572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain.
    Cochran AG; Kim PS
    Science; 1996 Feb; 271(5252):1113-6. PubMed ID: 8599087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the structure of the cytoplasmic domain of the aspartate receptor by targeted disulfide cross-linking.
    Chen X; Koshland DE
    Biochemistry; 1997 Sep; 36(39):11858-64. PubMed ID: 9305978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of CheA protein kinase activation in receptor signaling complexes.
    Levit MN; Liu Y; Stock JB
    Biochemistry; 1999 May; 38(20):6651-8. PubMed ID: 10350484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of 19F NMR to probe protein structure and conformational changes.
    Danielson MA; Falke JJ
    Annu Rev Biophys Biomol Struct; 1996; 25():163-95. PubMed ID: 8800468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.