These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 28201527)

  • 1. High dose of antibiotic colistin induces oligomerization of molecular chaperone HSP90.
    Togashi S; Takahashi K; Tamura A; Toyota I; Hatakeyama S; Komatsuda A; Kudo I; Sasaki Kudoh E; Okamoto T; Haga A; Miyamoto A; Grave E; Sugawara T; Shimizu H; Itoh H
    J Biochem; 2017 Jul; 162(1):27-36. PubMed ID: 28201527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity.
    Minagawa S; Kondoh Y; Sueoka K; Osada H; Nakamoto H
    Biochem J; 2011 Apr; 435(1):237-46. PubMed ID: 21210767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymyxin B: similarities to and differences from colistin (polymyxin E).
    Kwa A; Kasiakou SK; Tam VH; Falagas ME
    Expert Rev Anti Infect Ther; 2007 Oct; 5(5):811-21. PubMed ID: 17914915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90.
    Itoh H; Ogura M; Komatsuda A; Wakui H; Miura AB; Tashima Y
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):697-703. PubMed ID: 10527951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The region adjacent to the highly immunogenic site and shielded by the middle domain is responsible for self-oligomerization/client binding of the HSP90 molecular chaperone.
    Nemoto TK; Fukuma Y; Yamada S; Kobayakawa T; Ono T; Ohara-Nemoto Y
    Biochemistry; 2004 Jun; 43(23):7628-36. PubMed ID: 15182205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colistin: Revival of an Old Polymyxin Antibiotic.
    Dijkmans AC; Wilms EB; Kamerling IM; Birkhoff W; Ortiz-Zacarías NV; van Nieuwkoop C; Verbrugh HA; Touw DJ
    Ther Drug Monit; 2015 Aug; 37(4):419-27. PubMed ID: 25549206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colistin: an antibiotic and its role in multiresistant Gram-negative infections.
    Loho T; Dharmayanti A
    Acta Med Indones; 2015 Apr; 47(2):157-68. PubMed ID: 26260559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections.
    Falagas ME; Kasiakou SK
    Clin Infect Dis; 2005 May; 40(9):1333-41. PubMed ID: 15825037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Colistin in the post-antibiotic era].
    Aguayo A; Mella S; Riedel G; Bello H; Domínguez M; González-Rocha G
    Rev Chilena Infectol; 2016 Apr; 33(2):166-76. PubMed ID: 27314994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Mark Roe S; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Feb; 23(3):511-9. PubMed ID: 14739935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.
    Panaretou B; Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1998 Aug; 17(16):4829-36. PubMed ID: 9707442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colistin: re-emergence of the 'forgotten' antimicrobial agent.
    Dhariwal AK; Tullu MS
    J Postgrad Med; 2013; 59(3):208-15. PubMed ID: 24029199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of colistin-resistant bacteria in humans without colistin usage: a new worry and cause for vigilance.
    Olaitan AO; Morand S; Rolain JM
    Int J Antimicrob Agents; 2016 Jan; 47(1):1-3. PubMed ID: 26712133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colistin: an update on the antibiotic of the 21st century.
    Biswas S; Brunel JM; Dubus JC; Reynaud-Gaubert M; Rolain JM
    Expert Rev Anti Infect Ther; 2012 Aug; 10(8):917-34. PubMed ID: 23030331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Roe SM; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Mar; 23(6):1402-10. PubMed ID: 15039704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small molecule downregulation of PmrAB reverses lipid A modification and breaks colistin resistance.
    Harris TL; Worthington RJ; Hittle LE; Zurawski DV; Ernst RK; Melander C
    ACS Chem Biol; 2014 Jan; 9(1):122-7. PubMed ID: 24131198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox.
    Okada M; Itoh H; Hatakeyama T; Tokumitsu H; Kobayashi R
    Biochem J; 2003 Sep; 374(Pt 2):433-41. PubMed ID: 12803546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dextrin-colistin conjugates as a model bioresponsive treatment for multidrug resistant bacterial infections.
    Ferguson EL; Azzopardi E; Roberts JL; Walsh TR; Thomas DW
    Mol Pharm; 2014 Dec; 11(12):4437-47. PubMed ID: 25360900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa.
    Bergen PJ; Li J; Rayner CR; Nation RL
    Antimicrob Agents Chemother; 2006 Jun; 50(6):1953-8. PubMed ID: 16723551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.