BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28201688)

  • 1. Simultaneous processing and degradation of mitochondrial RNAs revealed by circularized RNA sequencing.
    Kuznetsova I; Siira SJ; Shearwood AJ; Ermer JA; Filipovska A; Rackham O
    Nucleic Acids Res; 2017 May; 45(9):5487-5500. PubMed ID: 28201688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Mitochondrial RNA-Processing Defects in Patient-Derived Tissues by qRT-PCR and RNAseq.
    Kopajtich R; Mayr JA; Prokisch H
    Methods Mol Biol; 2017; 1567():379-390. PubMed ID: 28276031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA processing in human mitochondria.
    Sanchez MI; Mercer TR; Davies SM; Shearwood AM; Nygård KK; Richman TR; Mattick JS; Rackham O; Filipovska A
    Cell Cycle; 2011 Sep; 10(17):2904-16. PubMed ID: 21857155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating Mitochondrial Transcriptomes and RNA Processing Using Circular RNA Sequencing.
    Kuznetsova I; Rackham O; Filipovska A
    Methods Mol Biol; 2021; 2192():43-57. PubMed ID: 33230764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RPAD (RNase R treatment, polyadenylation, and poly(A)+ RNA depletion) method to isolate highly pure circular RNA.
    Pandey PR; Rout PK; Das A; Gorospe M; Panda AC
    Methods; 2019 Feb; 155():41-48. PubMed ID: 30391514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation of 5' ends of plant mitochondrial RNAs.
    Binder S; Stoll K; Stoll B
    Physiol Plant; 2016 Jul; 157(3):280-8. PubMed ID: 26833432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA Processing Factor 5 is required for efficient 5' cleavage at a processing site conserved in RNAs of three different mitochondrial genes in Arabidopsis thaliana.
    Hauler A; Jonietz C; Stoll B; Stoll K; Braun HP; Binder S
    Plant J; 2013 May; 74(4):593-604. PubMed ID: 23398165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The post-transcriptional life of mammalian mitochondrial RNA.
    Rorbach J; Minczuk M
    Biochem J; 2012 Jun; 444(3):357-73. PubMed ID: 22642575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial mRNA fragments are circularized in a human HEK cell line.
    Mance LG; Mawla I; Shell SM; Cahoon AB
    Mitochondrion; 2020 Mar; 51():1-6. PubMed ID: 31821898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2.
    Liu P; Huang J; Zheng Q; Xie L; Lu X; Jin J; Wang G
    Protein Cell; 2017 Oct; 8(10):735-749. PubMed ID: 28730546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SUV3 helicase is required for correct processing of mitochondrial transcripts.
    Clemente P; Pajak A; Laine I; Wibom R; Wedell A; Freyer C; Wredenberg A
    Nucleic Acids Res; 2015 Sep; 43(15):7398-413. PubMed ID: 26152302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms.
    Seif E; Leigh J; Liu Y; Roewer I; Forget L; Lang BF
    Nucleic Acids Res; 2005; 33(2):734-44. PubMed ID: 15689432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation and evolution of polyadenylation profiles in sauropsid mitochondrial mRNAs as deduced from the high-throughput RNA sequencing.
    Sun Y; Kurisaki M; Hashiguchi Y; Kumazawa Y
    BMC Genomics; 2017 Aug; 18(1):665. PubMed ID: 28851277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved genome-wide mapping of uncapped and cleaved transcripts in eukaryotes--GMUCT 2.0.
    Willmann MR; Berkowitz ND; Gregory BD
    Methods; 2014 May; 67(1):64-73. PubMed ID: 23867340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LRPPRC-mediated folding of the mitochondrial transcriptome.
    Siira SJ; Spåhr H; Shearwood AJ; Ruzzenente B; Larsson NG; Rackham O; Filipovska A
    Nat Commun; 2017 Nov; 8(1):1532. PubMed ID: 29146908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance.
    Szczesny RJ; Borowski LS; Brzezniak LK; Dmochowska A; Gewartowski K; Bartnik E; Stepien PP
    Nucleic Acids Res; 2010 Jan; 38(1):279-98. PubMed ID: 19864255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The multifaceted roles of the RNA processing enzyme ribonuclease III.
    Srivastava RA; Srivastava N
    Indian J Biochem Biophys; 1996 Aug; 33(4):253-60. PubMed ID: 8936814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.
    Zhou W; Karcher D; Fischer A; Maximova E; Walther D; Bock R
    PLoS One; 2015; 10(3):e0120533. PubMed ID: 25793367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage.
    Bracken CP; Szubert JM; Mercer TR; Dinger ME; Thomson DW; Mattick JS; Michael MZ; Goodall GJ
    Nucleic Acids Res; 2011 Jul; 39(13):5658-68. PubMed ID: 21427086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3' ends.
    Xiao MS; Wilusz JE
    Nucleic Acids Res; 2019 Sep; 47(16):8755-8769. PubMed ID: 31269210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.