These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28201688)

  • 41. A forward genetic screen to study mammalian RNA interference: essential role of RNase IIIa domain of Dicer1 in 3' strand cleavage of dsRNA in vivo.
    Ohishi K; Nakano T
    FEBS J; 2012 Mar; 279(5):832-43. PubMed ID: 22221880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcription and processing of mitochondrial RNA in the human pathogen Acanthamoeba castellanii.
    Accari J; Barth C
    Mitochondrion; 2015 Jul; 23():25-31. PubMed ID: 26022779
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential expression of sense and antisense transcripts of the mitochondrial DNA region coding for ATPase 6 in fetal and adult porcine brain: identification of novel unusually assembled mitochondrial RNAs.
    Michel U; Stringaris AK; Nau R; Rieckmann P
    Biochem Biophys Res Commun; 2000 Apr; 271(1):170-80. PubMed ID: 10777698
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polyadenylation and degradation of RNA in the mitochondria.
    Levy S; Schuster G
    Biochem Soc Trans; 2016 Oct; 44(5):1475-1482. PubMed ID: 27911729
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptome-wide analysis of protein-RNA interactions using high-throughput sequencing.
    Milek M; Wyler E; Landthaler M
    Semin Cell Dev Biol; 2012 Apr; 23(2):206-12. PubMed ID: 22212136
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mapping of mitochondrial RNA-protein interactions by digital RNase footprinting.
    Liu G; Mercer TR; Shearwood AM; Siira SJ; Hibbs ME; Mattick JS; Rackham O; Filipovska A
    Cell Rep; 2013 Nov; 5(3):839-48. PubMed ID: 24183674
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 5-Methylcytosine Analysis by RNA-BisSeq.
    Chen YS; Ma HL; Yang Y; Lai WY; Sun BF; Yang YG
    Methods Mol Biol; 2019; 1870():237-248. PubMed ID: 30539560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GRSF1 regulates RNA processing in mitochondrial RNA granules.
    Jourdain AA; Koppen M; Wydro M; Rodley CD; Lightowlers RN; Chrzanowska-Lightowlers ZM; Martinou JC
    Cell Metab; 2013 Mar; 17(3):399-410. PubMed ID: 23473034
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Uridylation and adenylation of RNAs.
    Song J; Song J; Mo B; Chen X
    Sci China Life Sci; 2015 Nov; 58(11):1057-66. PubMed ID: 26563174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SLIRP Regulates the Rate of Mitochondrial Protein Synthesis and Protects LRPPRC from Degradation.
    Lagouge M; Mourier A; Lee HJ; SpÄhr H; Wai T; Kukat C; Silva Ramos E; Motori E; Busch JD; Siira S; ; Kremmer E; Filipovska A; Larsson NG
    PLoS Genet; 2015 Aug; 11(8):e1005423. PubMed ID: 26247782
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells.
    Rabani M; Levin JZ; Fan L; Adiconis X; Raychowdhury R; Garber M; Gnirke A; Nusbaum C; Hacohen N; Friedman N; Amit I; Regev A
    Nat Biotechnol; 2011 May; 29(5):436-42. PubMed ID: 21516085
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intramolecular circularization increases efficiency of RNA sequencing and enables CLIP-Seq of nuclear RNA from human cells.
    Chu Y; Wang T; Dodd D; Xie Y; Janowski BA; Corey DR
    Nucleic Acids Res; 2015 Jun; 43(11):e75. PubMed ID: 25813040
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the optimal design of metabolic RNA labeling experiments.
    Uvarovskii A; Naarmann-de Vries IS; Dieterich C
    PLoS Comput Biol; 2019 Aug; 15(8):e1007252. PubMed ID: 31390362
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcriptome profiling using single-molecule direct RNA sequencing.
    Ozsolak F; Milos PM
    Methods Mol Biol; 2011; 733():51-61. PubMed ID: 21431762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The human mitochondrial transcriptome.
    Mercer TR; Neph S; Dinger ME; Crawford J; Smith MA; Shearwood AM; Haugen E; Bracken CP; Rackham O; Stamatoyannopoulos JA; Filipovska A; Mattick JS
    Cell; 2011 Aug; 146(4):645-58. PubMed ID: 21854988
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The post-apoptotic fate of RNAs identified through high-throughput sequencing of human hair.
    Lefkowitz GK; Mukhopadhyay A; Cowing-Zitron C; Yu BD
    PLoS One; 2011; 6(11):e27603. PubMed ID: 22110684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome.
    Mercer TR; Dinger ME; Bracken CP; Kolle G; Szubert JM; Korbie DJ; Askarian-Amiri ME; Gardiner BB; Goodall GJ; Grimmond SM; Mattick JS
    Genome Res; 2010 Dec; 20(12):1639-50. PubMed ID: 21045082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases.
    Liudkovska V; Dziembowski A
    Wiley Interdiscip Rev RNA; 2021 Mar; 12(2):e1622. PubMed ID: 33145994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of human mitochondrial RNA cleavage sites and candidate RNA processing factors.
    Carbajosa G; Ali AT; Hodgkinson A
    BMC Biol; 2022 Jul; 20(1):168. PubMed ID: 35869520
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies.
    Battich N; Beumer J; de Barbanson B; Krenning L; Baron CS; Tanenbaum ME; Clevers H; van Oudenaarden A
    Science; 2020 Mar; 367(6482):1151-1156. PubMed ID: 32139547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.