BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 28201690)

  • 1. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis.
    Finethy R; Coers J
    FEMS Microbiol Rev; 2016 Nov; 40(6):875-893. PubMed ID: 28201690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogenesis of fallopian tube damage caused by Chlamydia trachomatis infections.
    Hafner LM
    Contraception; 2015 Aug; 92(2):108-15. PubMed ID: 25592078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells.
    Haldar AK; Piro AS; Finethy R; Espenschied ST; Brown HE; Giebel AM; Frickel EM; Nelson DE; Coers J
    mBio; 2016 Dec; 7(6):. PubMed ID: 27965446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mucosal immune response to Chlamydia trachomatis infection of the reproductive tract in women.
    Agrawal T; Vats V; Salhan S; Mittal A
    J Reprod Immunol; 2009 Dec; 83(1-2):173-8. PubMed ID: 19896206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intravaginal Chlamydia trachomatis Challenge Infection Elicits TH1 and TH17 Immune Responses in Mice That Promote Pathogen Clearance and Genital Tract Damage.
    Vicetti Miguel RD; Quispe Calla NE; Pavelko SD; Cherpes TL
    PLoS One; 2016; 11(9):e0162445. PubMed ID: 27606424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A re-evaluation of the role of B cells in protective immunity to Chlamydia infection.
    Li LX; McSorley SJ
    Immunol Lett; 2015 Apr; 164(2):88-93. PubMed ID: 25704502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydia trachomatis: the Persistent Pathogen.
    Witkin SS; Minis E; Athanasiou A; Leizer J; Linhares IM
    Clin Vaccine Immunol; 2017 Oct; 24(10):. PubMed ID: 28835360
    [No Abstract]   [Full Text] [Related]  

  • 8. Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection.
    Webster SJ; Brode S; Ellis L; Fitzmaurice TJ; Elder MJ; Gekara NO; Tourlomousis P; Bryant C; Clare S; Chee R; Gaston HJS; Goodall JC
    PLoS Pathog; 2017 Jun; 13(6):e1006383. PubMed ID: 28570638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution of Chlamydia trachomatis Infection Is Associated with a Distinct T Cell Response Profile.
    Picard MD; Bodmer JL; Gierahn TM; Lee A; Price J; Cohane K; Clemens V; DeVault VL; Gurok G; Kohberger R; Higgins DE; Siber GR; Flechtner JB; Geisler WM
    Clin Vaccine Immunol; 2015 Nov; 22(11):1206-18. PubMed ID: 26446421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Male genital tract immune response against
    Mackern-Oberti JP; Motrich RD; Damiani MT; Saka HA; Quintero CA; Sánchez LR; Moreno-Sosa T; Olivera C; Cuffini C; Rivero VE
    Reproduction; 2017 Oct; 154(4):R99-R110. PubMed ID: 28878094
    [No Abstract]   [Full Text] [Related]  

  • 11. Chlamydia trachomatis-associated tubal factor subfertility: Immunogenetic aspects and serological screening.
    den Hartog JE; Morré SA; Land JA
    Hum Reprod Update; 2006; 12(6):719-30. PubMed ID: 16832042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia trachomatis infection of the male genital tract: an update.
    Mackern-Oberti JP; Motrich RD; Breser ML; Sánchez LR; Cuffini C; Rivero VE
    J Reprod Immunol; 2013 Nov; 100(1):37-53. PubMed ID: 23870458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innate Lymphoid Cells Are Required for Endometrial Resistance to
    Xu H; Su X; Zhao Y; Tang L; Chen J; Zhong G
    Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32341118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis.
    Rey-Ladino J; Ross AG; Cripps AW
    Hum Vaccin Immunother; 2014; 10(9):2664-73. PubMed ID: 25483666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydia trachomatis Genital Tract Infections: When Host Immune Response and the Microbiome Collide.
    Ziklo N; Huston WM; Hocking JS; Timms P
    Trends Microbiol; 2016 Sep; 24(9):750-765. PubMed ID: 27320172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection.
    Poston TB; Gottlieb SL; Darville T
    Vaccine; 2019 Nov; 37(50):7289-7294. PubMed ID: 28111145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irgm proteins attenuate inflammatory disease in mouse models of genital
    Dockterman J; Reitano JR; Everitt JI; Wallace GD; Hendrix M; Taylor GA; Coers J
    mBio; 2024 Apr; 15(4):e0030324. PubMed ID: 38501887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections.
    Aiyar A; Quayle AJ; Buckner LR; Sherchand SP; Chang TL; Zea AH; Martin DH; Belland RJ
    Front Cell Infect Microbiol; 2014; 4():72. PubMed ID: 24918090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia trachomatis Lipopolysaccharide Evades the Canonical and Noncanonical Inflammatory Pathways To Subvert Innate Immunity.
    Yang C; Briones M; Chiou J; Lei L; Patton MJ; Ma L; McClarty G; Caldwell HD
    mBio; 2019 Apr; 10(2):. PubMed ID: 31015326
    [No Abstract]   [Full Text] [Related]  

  • 20. Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia-infected macrophages.
    Finethy R; Jorgensen I; Haldar AK; de Zoete MR; Strowig T; Flavell RA; Yamamoto M; Nagarajan UM; Miao EA; Coers J
    Infect Immun; 2015 Dec; 83(12):4740-9. PubMed ID: 26416908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.