BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 28201690)

  • 21. Human female genital tract infection by the obligate intracellular bacterium Chlamydia trachomatis elicits robust Type 2 immunity.
    Vicetti Miguel RD; Harvey SA; LaFramboise WA; Reighard SD; Matthews DB; Cherpes TL
    PLoS One; 2013; 8(3):e58565. PubMed ID: 23555586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential CD28 and inducible costimulatory molecule signaling requirements for protective CD4+ T-cell-mediated immunity against genital tract Chlamydia trachomatis infection.
    Marks E; Verolin M; Stensson A; Lycke N
    Infect Immun; 2007 Sep; 75(9):4638-47. PubMed ID: 17635872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine.
    Brunham RC; Rey-Ladino J
    Nat Rev Immunol; 2005 Feb; 5(2):149-61. PubMed ID: 15688042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypothesis: Chlamydia trachomatis infection of the female genital tract is controlled by Type 2 immunity.
    Vicetti Miguel RD; Cherpes TL
    Med Hypotheses; 2012 Dec; 79(6):713-6. PubMed ID: 22986006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro rescue of genital strains of Chlamydia trachomatis from interferon-γ and tryptophan depletion with indole-positive, but not indole-negative Prevotella spp.
    Ziklo N; Huston WM; Taing K; Katouli M; Timms P
    BMC Microbiol; 2016 Dec; 16(1):286. PubMed ID: 27914477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research.
    Vasilevsky S; Greub G; Nardelli-Haefliger D; Baud D
    Clin Microbiol Rev; 2014 Apr; 27(2):346-70. PubMed ID: 24696438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compensatory T cell responses in IRG-deficient mice prevent sustained Chlamydia trachomatis infections.
    Coers J; Gondek DC; Olive AJ; Rohlfing A; Taylor GA; Starnbach MN
    PLoS Pathog; 2011 Jun; 7(6):e1001346. PubMed ID: 21731484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immune-mediated control of Chlamydia infection.
    Roan NR; Starnbach MN
    Cell Microbiol; 2008 Jan; 10(1):9-19. PubMed ID: 17979983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection.
    Barker JR; Koestler BJ; Carpenter VK; Burdette DL; Waters CM; Vance RE; Valdivia RH
    mBio; 2013 Apr; 4(3):e00018-13. PubMed ID: 23631912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mast cells selectively produce inflammatory mediators and impact the early response to
    Mayavannan A; Shantz E; Haidl ID; Wang J; Marshall JS
    Front Immunol; 2023; 14():1166068. PubMed ID: 37138882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Animal models for the study of Chlamydia trachomatis infections in the female genital infection.
    Vanrompay D; Lyons JM; Morré SA
    Drugs Today (Barc); 2006 Mar; 42 Suppl A():55-63. PubMed ID: 16683045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for cGAS-STING Signaling in the Female Genital Tract Resistance to Chlamydia trachomatis Infection.
    Su X; Xu H; French M; Zhao Y; Tang L; Li XD; Chen J; Zhong G
    Infect Immun; 2022 Feb; 90(2):e0067021. PubMed ID: 34978925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Host inflammatory response and development of complications of Chlamydia trachomatis genital infection in CCR5-deficient mice and subfertile women with the CCR5delta32 gene deletion.
    Barr EL; Ouburg S; Igietseme JU; Morré SA; Okwandu E; Eko FO; Ifere G; Belay T; He Q; Lyn D; Nwankwo G; Lillard JW; Black CM; Ananaba GA
    J Microbiol Immunol Infect; 2005 Aug; 38(4):244-54. PubMed ID: 16118671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Will a vaccine against Chlamydia trachomatis be available soon?].
    Baud D; Stojanov M
    Rev Med Suisse; 2015 Oct; 11(492):1993-4, 1996-8. PubMed ID: 26672177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TLR2 haplotypes in the susceptibility to and severity of Chlamydia trachomatis infections in Dutch women.
    Karimi O; Ouburg S; de Vries HJ; Peña AS; Pleijster J; Land JA; Morré SA
    Drugs Today (Barc); 2009 Nov; 45 Suppl B():67-74. PubMed ID: 20011697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemokine-mediated immune responses in the female genital tract mucosa.
    Deruaz M; Luster AD
    Immunol Cell Biol; 2015 Apr; 93(4):347-54. PubMed ID: 25776842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vaccines for Chlamydia infections of the female genital tract.
    Hafner LM; McNeilly C
    Future Microbiol; 2008 Feb; 3(1):67-77. PubMed ID: 18230035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IL-4-secreting eosinophils promote endometrial stromal cell proliferation and prevent
    Vicetti Miguel RD; Quispe Calla NE; Dixon D; Foster RA; Gambotto A; Pavelko SD; Hall-Stoodley L; Cherpes TL
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6892-E6901. PubMed ID: 28765368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Innate immunity in defense against Chlamydia trachomatis infections.
    Severin JA; Ossewaarde JM
    Drugs Today (Barc); 2006 Mar; 42 Suppl A():75-81. PubMed ID: 16683047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential regulation of inflammatory cytokine secretion by human dendritic cells upon Chlamydia trachomatis infection.
    Gervassi A; Alderson MR; Suchland R; Maisonneuve JF; Grabstein KH; Probst P
    Infect Immun; 2004 Dec; 72(12):7231-9. PubMed ID: 15557648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.