These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 28201872)
1. Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection. Giorio C; Campbell SJ; Bruschi M; Tampieri F; Barbon A; Toffoletti A; Tapparo A; Paijens C; Wedlake AJ; Grice P; Howe DJ; Kalberer M J Am Chem Soc; 2017 Mar; 139(11):3999-4008. PubMed ID: 28201872 [TBL] [Abstract][Full Text] [Related]
2. Detection and identification of Criegee intermediates from the ozonolysis of biogenic and anthropogenic VOCs: comparison between experimental measurements and theoretical calculations. Giorio C; Campbell SJ; Bruschi M; Archibald AT; Kalberer M Faraday Discuss; 2017 Aug; 200():559-578. PubMed ID: 28580994 [TBL] [Abstract][Full Text] [Related]
3. Infrared detection of Criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide. Ahrens J; Carlsson PT; Hertl N; Olzmann M; Pfeifle M; Wolf JL; Zeuch T Angew Chem Int Ed Engl; 2014 Jan; 53(3):715-9. PubMed ID: 24402798 [TBL] [Abstract][Full Text] [Related]
4. Characterization and Quantification of Particle-Bound Criegee Intermediates in Secondary Organic Aerosol. Campbell SJ; Wolfer K; Gallimore PJ; Giorio C; Häussinger D; Boillat MA; Kalberer M Environ Sci Technol; 2022 Sep; 56(18):12945-12954. PubMed ID: 36054832 [TBL] [Abstract][Full Text] [Related]
5. Ozonolysis of alpha-pinene and beta-pinene: kinetics and mechanism. Zhang D; Zhang R J Chem Phys; 2005 Mar; 122(11):114308. PubMed ID: 15836216 [TBL] [Abstract][Full Text] [Related]
6. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes. Drozd GT; Donahue NM J Phys Chem A; 2011 May; 115(17):4381-7. PubMed ID: 21476564 [TBL] [Abstract][Full Text] [Related]
7. Infrared matrix isolation and theoretical studies of reactions of ozone with bicyclic alkenes: α-pinene, norbornene, and norbornadiene. Kugel RW; Ault BS J Phys Chem A; 2015 Jan; 119(2):312-22. PubMed ID: 25495369 [TBL] [Abstract][Full Text] [Related]
8. Atmospheric Degradation of Ecologically Important Biogenic Volatiles: Investigating the Ozonolysis of (E)-β-Ocimene, Isomers of α and β-Farnesene, α-Terpinene and 6-Methyl-5-Hepten-2-One, and Their Gas-Phase Products. Touhami D; Mofikoya AO; Girling RD; Langford B; Misztal PK; Pfrang C J Chem Ecol; 2024 Apr; 50(3-4):129-142. PubMed ID: 38195852 [TBL] [Abstract][Full Text] [Related]
9. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides. Taatjes CA Annu Rev Phys Chem; 2017 May; 68():183-207. PubMed ID: 28463651 [TBL] [Abstract][Full Text] [Related]
10. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods. Jr-Min Lin J; Chao W Chem Soc Rev; 2017 Dec; 46(24):7483-7497. PubMed ID: 28840926 [TBL] [Abstract][Full Text] [Related]
12. The gas-phase ozonolysis of beta-caryophyllene (C(15)H(24)). Part I: an experimental study. Winterhalter R; Herrmann F; Kanawati B; Nguyen TL; Peeters J; Vereecken L; Moortgat GK Phys Chem Chem Phys; 2009 Jun; 11(21):4152-72. PubMed ID: 19458818 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of biogenic and water-soluble compounds in aqueous and organic aerosol droplets by ozone: a kinetic and product analysis approach using laser Raman tweezers. King MD; Thompson KC; Ward AD; Pfrang C; Hughes BR Faraday Discuss; 2008; 137():173-92; discussion 193-204. PubMed ID: 18214104 [TBL] [Abstract][Full Text] [Related]
14. Evidence and evolution of Criegee intermediates, hydroperoxides and secondary organic aerosols formed via ozonolysis of α-pinene. Bagchi A; Yu Y; Huang JH; Tsai CC; Hu WP; Wang CC Phys Chem Chem Phys; 2020 Mar; 22(12):6528-6537. PubMed ID: 32091071 [TBL] [Abstract][Full Text] [Related]
15. Criegee intermediates and their impacts on the troposphere. Khan MAH; Percival CJ; Caravan RL; Taatjes CA; Shallcross DE Environ Sci Process Impacts; 2018 Mar; 20(3):437-453. PubMed ID: 29480909 [TBL] [Abstract][Full Text] [Related]
16. Isolating α-Pinene Ozonolysis Pathways Reveals New Insights into Peroxy Radical Chemistry and Secondary Organic Aerosol Formation. Zhao Z; Zhang W; Alexander T; Zhang X; Martin DBC; Zhang H Environ Sci Technol; 2021 May; 55(10):6700-6709. PubMed ID: 33913707 [TBL] [Abstract][Full Text] [Related]
17. The gas-phase ozonolysis of α-humulene. Beck M; Winterhalter R; Herrmann F; Moortgat GK Phys Chem Chem Phys; 2011 Jun; 13(23):10970-1001. PubMed ID: 21461420 [TBL] [Abstract][Full Text] [Related]
18. Pressure dependent mechanistic branching in the formation pathways of secondary organic aerosol from cyclic-alkene gas-phase ozonolysis. Wolf JL; Richters S; Pecher J; Zeuch T Phys Chem Chem Phys; 2011 Jun; 13(23):10952-64. PubMed ID: 21442094 [TBL] [Abstract][Full Text] [Related]
19. Secondary Organic Aerosol Formation from Aromatic Alkene Ozonolysis: Influence of the Precursor Structure on Yield, Chemical Composition, and Mechanism. Chiappini L; Perraudin E; Maurin N; Picquet-Varrault B; Zheng W; Marchand N; Temime-Roussel B; Monod A; Le Person A; Bernard F; Eyglunent G; Mellouki A; Doussin JF J Phys Chem A; 2019 Feb; 123(7):1469-1484. PubMed ID: 30626185 [TBL] [Abstract][Full Text] [Related]