These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28201879)

  • 1. Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole.
    Li SL; Truhlar DG
    J Chem Phys; 2017 Feb; 146(6):064301. PubMed ID: 28201879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-dimensional three-state potential energy surfaces and state couplings for photodissociation of thiophenol.
    Zhang L; Truhlar DG; Sun S
    J Chem Phys; 2019 Oct; 151(15):154306. PubMed ID: 31640376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct diabatization and analytic representation of coupled potential energy surfaces and couplings for the reactive quenching of the excited
    Shu Y; Kryven J; Sampaio de Oliveira-Filho AG; Zhang L; Song GL; Li SL; Meana-Pañeda R; Fu B; Bowman JM; Truhlar DG
    J Chem Phys; 2019 Sep; 151(10):104311. PubMed ID: 31521070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonintuitive Diabatic Potential Energy Surfaces for Thioanisole.
    Li SL; Xu X; Hoyer CE; Truhlar DG
    J Phys Chem Lett; 2015 Sep; 6(17):3352-9. PubMed ID: 26267410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonadiabatic effects in C-Br bond scission in the photodissociation of bromoacetyl chloride.
    Valero R; Truhlar DG
    J Chem Phys; 2006 Nov; 125(19):194305. PubMed ID: 17129101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol.
    Xu X; Yang KR; Truhlar DG
    J Chem Theory Comput; 2013 Aug; 9(8):3612-25. PubMed ID: 26584115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permutationally Restrained Diabatization by Machine Intelligence.
    Shu Y; Varga Z; Sampaio de Oliveira-Filho AG; Truhlar DG
    J Chem Theory Comput; 2021 Feb; 17(2):1106-1116. PubMed ID: 33405927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings.
    Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S
    Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiglobal diabatic potential energy matrix for the N-H photodissociation of methylamine.
    Parker KA; Truhlar DG
    J Chem Phys; 2020 Jun; 152(24):244309. PubMed ID: 32610943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct calculation of coupled diabatic potential-energy surfaces for ammonia and mapping of a four-dimensional conical intersection seam.
    Nangia S; Truhlar DG
    J Chem Phys; 2006 Mar; 124(12):124309. PubMed ID: 16599676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics.
    Valero R; Truhlar DG
    J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal conversion and intersystem crossing dynamics based on coupled potential energy surfaces with full geometry-dependent spin-orbit and derivative couplings. Nonadiabatic photodissociation dynamics of NH
    Wang Y; Guo H; Yarkony DR
    Phys Chem Chem Phys; 2022 Jun; 24(24):15060-15067. PubMed ID: 35696936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the elimination of the electronic structure bottleneck in on the fly nonadiabatic dynamics for small to moderate sized (10-15 atom) molecules using fit diabatic representations based solely on ab initio electronic structure data: The photodissociation of phenol.
    Zhu X; Yarkony DR
    J Chem Phys; 2016 Jan; 144(2):024105. PubMed ID: 26772552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-dimensional multi-state simulation of the photodissociation of thioanisole.
    Li SL; Truhlar DG
    J Chem Phys; 2017 Jul; 147(4):044311. PubMed ID: 28764367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Diabatic Potential Energy Surfaces for the Photodissociation of Thiophenol.
    Lin GS; Xie C; Xie D
    J Phys Chem A; 2017 Nov; 121(44):8432-8439. PubMed ID: 29045150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model space diabatization for quantum photochemistry.
    Li SL; Truhlar DG; Schmidt MW; Gordon MS
    J Chem Phys; 2015 Feb; 142(6):064106. PubMed ID: 25681886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-diabatic representations of adiabatic potential energy surfaces coupled by conical intersections including bond breaking: a more general construction procedure and an analysis of the diabatic representation.
    Zhu X; Yarkony DR
    J Chem Phys; 2012 Dec; 137(22):22A511. PubMed ID: 23249048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspective on Diabatic Models of Chemical Reactivity as Illustrated by the Gas-Phase S(N)2 Reaction of Acetate Ion with 1,2-Dichloroethane.
    Valero R; Song L; Gao J; Truhlar DG
    J Chem Theory Comput; 2009 Jan; 5(1):1-22. PubMed ID: 20047005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-state diabatic potential energy surfaces of ClH
    Yin Z; Guan Y; Fu B; Zhang DH
    Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved quasi-diabatic representation of the 1, 2, 3(1)A coupled adiabatic potential energy surfaces of phenol in the full 33 internal coordinates.
    Zhu X; Malbon CL; Yarkony DR
    J Chem Phys; 2016 Mar; 144(12):124312. PubMed ID: 27036453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.