These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28201896)

  • 1. Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach.
    Ding W; Hsu LY; Schatz GC
    J Chem Phys; 2017 Feb; 146(6):064109. PubMed ID: 28201896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Coupled Resonance Energy Transfer.
    Hsu LY; Ding W; Schatz GC
    J Phys Chem Lett; 2017 May; 8(10):2357-2367. PubMed ID: 28467705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection.
    Su Q; Feng W; Yang D; Li F
    Acc Chem Res; 2017 Jan; 50(1):32-40. PubMed ID: 27983801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. I. Formalism.
    Wang S; Chuang YT; Hsu LY
    J Chem Phys; 2022 Nov; 157(18):184107. PubMed ID: 36379764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Quantum Electrodynamics Description of Quantum Coherence and Damping in Condensed-Phase Energy Transfer.
    Ford JS; Salam A; Jones GA
    J Phys Chem Lett; 2019 Sep; 10(18):5654-5661. PubMed ID: 31483664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified treatment of coherent and incoherent electronic energy transfer dynamics using classical electrodynamics.
    Zimanyi EN; Silbey RJ
    J Chem Phys; 2010 Oct; 133(14):144107. PubMed ID: 20949987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable Frequency Dependence of Resonance Energy Transfer Coupled with Localized Surface Plasmon Polaritons.
    Lee MW; Hsu LY
    J Phys Chem Lett; 2020 Aug; 11(16):6796-6804. PubMed ID: 32787214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.
    Sun J; Li G; Liang W
    Phys Chem Chem Phys; 2015 Jul; 17(26):16835-45. PubMed ID: 26058430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical approach to multichromophoric resonance energy transfer.
    Duque S; Brumer P; Pachón LA
    Phys Rev Lett; 2015 Sep; 115(11):110402. PubMed ID: 26406811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum electrodynamics and plasmonic resonance of metallic nanostructures.
    Zhang M; Xiang H; Zhang X; Lu G
    J Phys Condens Matter; 2016 Apr; 28(15):155302. PubMed ID: 26987436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror.
    Weeraddana D; Premaratne M; Gunapala SD; Andrews DL
    J Chem Phys; 2017 Aug; 147(7):074117. PubMed ID: 28830167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons.
    Wu JS; Lin YC; Sheu YL; Hsu LY
    J Phys Chem Lett; 2018 Dec; 9(24):7032-7039. PubMed ID: 30489084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein quantification using resonance energy transfer between donor nanoparticles and acceptor quantum dots.
    Härmä H; Pihlasalo S; Cywinski PJ; Mikkonen P; Hammann T; Löhmannsröben HG; Hänninen P
    Anal Chem; 2013 Mar; 85(5):2921-6. PubMed ID: 23391291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
    Zhao S
    Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach.
    Sakko A; Rossi TP; Nieminen RM
    J Phys Condens Matter; 2014 Aug; 26(31):315013. PubMed ID: 25028486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity.
    Kokin E; An HJ; Koo D; Han S; Whang K; Kang T; Choi I; Lee LP
    Nano Lett; 2022 Dec; 22(24):9861-9868. PubMed ID: 36484527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-enhanced high order harmonic generation of open-ended finite-sized carbon nanotubes: The effects of incident field's intensity and frequency and the interference between the incident and scattered fields.
    Sun J; Ding Z; Yu Y; Liang W
    J Chem Phys; 2020 Jun; 152(22):224708. PubMed ID: 32534528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Necessary Trade-off for Semiclassical Electrodynamics: Accurate Short-Range Coulomb Interactions versus the Enforcement of Causality?
    Li TE; Chen HT; Nitzan A; Sukharev M; Subotnik JE
    J Phys Chem Lett; 2018 Oct; 9(20):5955-5961. PubMed ID: 30277405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.