BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28201992)

  • 21. Effects of selenium on biological and physiological properties of the duckweed Landoltia punctata.
    Zhong Y; Cheng JJ
    Plant Biol (Stuttg); 2016 Sep; 18(5):797-804. PubMed ID: 27284791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of synthetic media on long-term growth, starch accumulation and transcription of ADP-glucosepyrophosphorylase subunit genes in Landoltia punctata.
    Kittiwongwattana C
    Sci Rep; 2019 Oct; 9(1):15310. PubMed ID: 31653895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative transcriptome analysis of duckweed (Landoltia punctata) in response to cadmium provides insights into molecular mechanisms underlying hyperaccumulation.
    Xu H; Yu C; Xia X; Li M; Li H; Wang Y; Wang S; Wang C; Ma Y; Zhou G
    Chemosphere; 2018 Jan; 190():154-165. PubMed ID: 28987404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ammonium and nitrate uptake by the floating plant Landoltia punctata.
    Fang YY; Babourina O; Rengel Z; Yang XE; Pu PM
    Ann Bot; 2007 Feb; 99(2):365-70. PubMed ID: 17204539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137.
    Shen N; Wang Q; Zhu J; Qin Y; Liao S; Li Y; Zhu Q; Jin Y; Du L; Huang R
    Bioresour Technol; 2016 Jul; 211():307-12. PubMed ID: 27023386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production.
    Ma YB; Zhu M; Yu CJ; Wang Y; Liu Y; Li ML; Sun YD; Zhao JS; Zhou GK
    Plant Biol (Stuttg); 2018 Mar; 20(2):357-364. PubMed ID: 29222918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock.
    Su H; Jiang J; Lu Q; Zhao Z; Xie T; Zhao H; Wang M
    Microb Cell Fact; 2015 Feb; 14():16. PubMed ID: 25889648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains.
    Tang J; Li Y; Ma J; Cheng JJ
    Plant Biol (Stuttg); 2015 Sep; 17(5):1066-72. PubMed ID: 25950142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural variance in salt tolerance and induction of starch accumulation in duckweeds.
    Sree KS; Adelmann K; Garcia C; Lam E; Appenroth KJ
    Planta; 2015 Jun; 241(6):1395-404. PubMed ID: 25693515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolome and transcriptome analyses of the flavonoid biosynthetic pathway for the efficient accumulation of anthocyanins and other flavonoids in a new duckweed variety (68-red).
    Liu Y; Li C; Yan R; Yu R; Ji M; Chen F; Fan S; Meng J; Liu F; Zhou G; Tang X
    J Plant Physiol; 2022 Aug; 275():153753. PubMed ID: 35760019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nutrient recovery from swine waste and protein biomass production using duckweed ponds (Landoltia punctata): southern Brazil.
    Mohedano RA; Velho VF; Costa RH; Hofmann SM; Belli Filho P
    Water Sci Technol; 2012; 65(11):2042-8. PubMed ID: 22592476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of various spectral compositions on micro-polluted water purification and biofuel feedstock production using duckweed.
    Li Q; Yi Z; Yang G; Xu Y; Jin Y; Tan L; Du A; He K; Zhao H; Fang Y
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):52003-52012. PubMed ID: 35257341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abscisic acid-enhanced starch accumulation of bioenergy crop duckweed (
    Wang X; Cui W; Hu W; Feng C
    RSC Adv; 2020 Mar; 10(18):10394-10401. PubMed ID: 35492951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production.
    Yin Y; Yu C; Yu L; Zhao J; Sun C; Ma Y; Zhou G
    Bioresour Technol; 2015; 187():84-90. PubMed ID: 25841186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical forms governing Cd tolerance and detoxification in duckweed (Landoltia punctata).
    Wang X; Zhang B; Wu D; Hu L; Huang T; Gao G; Huang S; Wu S
    Ecotoxicol Environ Saf; 2021 Jan; 207():111553. PubMed ID: 33254410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ammonium detoxification mechanism of ammonium-tolerant duckweed (Landoltia punctata) revealed by carbon and nitrogen metabolism under ammonium stress.
    Tian X; Fang Y; Jin Y; Yi Z; Li J; Du A; He K; Huang Y; Zhao H
    Environ Pollut; 2021 May; 277():116834. PubMed ID: 33714787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed.
    Yu C; Zhao X; Qi G; Bai Z; Wang Y; Wang S; Ma Y; Liu Q; Hu R; Zhou G
    Biotechnol Biofuels; 2017; 10():167. PubMed ID: 28670341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative analysis of duckweed cultivation with sewage water and SH media for production of fuel ethanol.
    Yu C; Sun C; Yu L; Zhu M; Xu H; Zhao J; Ma Y; Zhou G
    PLoS One; 2014; 9(12):e115023. PubMed ID: 25517893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Duckweed Is a Promising Feedstock of Biofuels: Advantages and Approaches.
    Yang GL
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photosynthetic redox imbalance influences flavonoid biosynthesis in Lemna gibba.
    Akhtar TA; Lees HA; Lampi MA; Enstone D; Brain RA; Greenberg BM
    Plant Cell Environ; 2010 Jul; 33(7):1205-19. PubMed ID: 20199616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.