These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28202588)

  • 1. Control and regulation of pathways via negative feedback.
    Sauro HM
    J R Soc Interface; 2017 Feb; 14(127):. PubMed ID: 28202588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphofructokinase controls the acetaldehyde-induced phase shift in isolated yeast glycolytic oscillators.
    van Niekerk DD; Gustavsson AK; Mojica-Benavides M; Adiels CB; Goksör M; Snoep JL
    Biochem J; 2019 Jan; 476(2):353-363. PubMed ID: 30482792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental study of the regulation of glycolytic oscillations in yeast.
    Schrøder TD; Özalp VC; Lunding A; Jernshøj KD; Olsen LF
    FEBS J; 2013 Dec; 280(23):6033-44. PubMed ID: 24028352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae.
    Yamada R; Wakita K; Ogino H
    ACS Synth Biol; 2017 Apr; 6(4):659-666. PubMed ID: 28080037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the genetic control of glycolytic oscillations in Saccharomyces cerevisiae.
    Williamson T; Adiamah D; Schwartz JM; Stateva L
    BMC Syst Biol; 2012 Aug; 6():108. PubMed ID: 22920924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses.
    Visser D; van Zuylen GA; van Dam JC; Eman MR; Pröll A; Ras C; Wu L; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2004 Oct; 88(2):157-67. PubMed ID: 15449293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells.
    Gustavsson AK; van Niekerk DD; Adiels CB; Kooi B; Goksör M; Snoep JL
    FEBS J; 2014 Jun; 281(12):2784-93. PubMed ID: 24751218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inward rotating spiral waves in glycolysis.
    Straube R; Vermeer S; Nicola EM; Mair T
    Biophys J; 2010 Jul; 99(1):L4-6. PubMed ID: 20655824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining flux and energy balance analysis to model large-scale biochemical networks.
    Heuett WJ; Qian H
    J Bioinform Comput Biol; 2006 Dec; 4(6):1227-43. PubMed ID: 17245812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolytic oscillations in a model of a lactic acid bacterium metabolism.
    Levering J; Kummer U; Becker K; Sahle S
    Biophys Chem; 2013 Feb; 172():53-60. PubMed ID: 23357412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.
    Han BK; Emr SD
    J Biol Chem; 2013 Jul; 288(28):20633-45. PubMed ID: 23733183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering under uncertainty--II: analysis of yeast metabolism.
    Wang L; Hatzimanikatis V
    Metab Eng; 2006 Mar; 8(2):142-59. PubMed ID: 16413809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic modeling of yeast meiotic initiation.
    Ray D; Su Y; Ye P
    BMC Syst Biol; 2013 May; 7():37. PubMed ID: 23631506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding bistability in yeast glycolysis using general properties of metabolic pathways.
    Planqué R; Bruggeman FJ; Teusink B; Hulshof J
    Math Biosci; 2014 Sep; 255():33-42. PubMed ID: 24956444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of complex regulatory networks.
    Stelling J; Gilles ED
    IEEE Trans Nanobioscience; 2004 Sep; 3(3):172-9. PubMed ID: 15473069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast.
    Zampar GG; Kümmel A; Ewald J; Jol S; Niebel B; Picotti P; Aebersold R; Sauer U; Zamboni N; Heinemann M
    Mol Syst Biol; 2013; 9():651. PubMed ID: 23549479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanisms of glycolytic oscillations in yeast.
    Madsen MF; Danø S; Sørensen PG
    FEBS J; 2005 Jun; 272(11):2648-60. PubMed ID: 15943800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient Signaling via the TORC1-Greatwall-PP2A
    Watanabe D; Kajihara T; Sugimoto Y; Takagi K; Mizuno M; Zhou Y; Chen J; Takeda K; Tatebe H; Shiozaki K; Nakazawa N; Izawa S; Akao T; Shimoi H; Maeda T; Takagi H
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30341081
    [No Abstract]   [Full Text] [Related]  

  • 20. Proviral and antiviral roles of phosphofructokinase family of glycolytic enzymes in TBSV replication.
    Liu Y; Lin W; Nagy PD
    Virology; 2024 Nov; 599():110190. PubMed ID: 39146928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.