BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 28202604)

  • 1. Retraction: Antioxidant-induced INrf2 (Keap1) tyrosine 85 phosphorylation controls the nuclear export and degradation of the INrf2-Cul3-Rbx1 complex to allow normal Nrf2 activation and repression.
    Kaspar JW; Niture SK; Jaiswal AK
    J Cell Sci; 2017 Feb; 130(4):814. PubMed ID: 28202604
    [No Abstract]   [Full Text] [Related]  

  • 2. Antioxidant-induced INrf2 (Keap1) tyrosine 85 phosphorylation controls the nuclear export and degradation of the INrf2-Cul3-Rbx1 complex to allow normal Nrf2 activation and repression.
    Kaspar JW; Niture SK; Jaiswal AK
    J Cell Sci; 2012 Feb; 125(Pt 4):1027-38. PubMed ID: 22448038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prothymosin-alpha mediates nuclear import of the INrf2/Cul3 Rbx1 complex to degrade nuclear Nrf2.
    Niture SK; Jaiswal AK
    J Biol Chem; 2009 May; 284(20):13856-13868. PubMed ID: 19279002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An autoregulatory loop between Nrf2 and Cul3-Rbx1 controls their cellular abundance.
    Kaspar JW; Jaiswal AK
    J Biol Chem; 2010 Jul; 285(28):21349-58. PubMed ID: 20452971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nrf2:INrf2 (Keap1) signaling in oxidative stress.
    Kaspar JW; Niture SK; Jaiswal AK
    Free Radic Biol Med; 2009 Nov; 47(9):1304-9. PubMed ID: 19666107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents.
    Giudice A; Arra C; Turco MC
    Methods Mol Biol; 2010; 647():37-74. PubMed ID: 20694660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation and dephosphorylation of tyrosine 141 regulate stability and degradation of INrf2: a novel mechanism in Nrf2 activation.
    Jain AK; Mahajan S; Jaiswal AK
    J Biol Chem; 2008 Jun; 283(25):17712-20. PubMed ID: 18434303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prothymosin-α mediates nuclear import of the INrf2/Cul3·Rbx1 complex to degrade nuclear Nrf2.
    Niture SK; Jaiswal AK
    J Biol Chem; 2017 Feb; 292(5):2049. PubMed ID: 28159762
    [No Abstract]   [Full Text] [Related]  

  • 10. Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene.
    Dhakshinamoorthy S; Jaiswal AK
    Oncogene; 2001 Jun; 20(29):3906-17. PubMed ID: 11439354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.
    Furukawa M; Xiong Y
    Mol Cell Biol; 2005 Jan; 25(1):162-71. PubMed ID: 15601839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex components by multiple genetic mechanisms: Association with poor prognosis in head and neck cancer.
    Martinez VD; Vucic EA; Thu KL; Pikor LA; Lam S; Lam WL
    Head Neck; 2015 May; 37(5):727-34. PubMed ID: 24596130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.
    Vriend J; Reiter RJ
    Mol Cell Endocrinol; 2015 Feb; 401():213-20. PubMed ID: 25528518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway.
    Hayes JD; McMahon M; Chowdhry S; Dinkova-Kostova AT
    Antioxid Redox Signal; 2010 Dec; 13(11):1713-48. PubMed ID: 20446772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1.
    Lo SC; Hannink M
    Mol Cell Biol; 2006 Feb; 26(4):1235-44. PubMed ID: 16449638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells.
    Iso T; Suzuki T; Baird L; Yamamoto M
    Mol Cell Biol; 2016 Dec; 36(24):3100-3112. PubMed ID: 27697860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retraction: Oncogene PKCε controls INrf2-Nrf2 interaction in normal and cancer cells through phosphorylation of INrf2.
    Niture SK; Gnatt A; Jaiswal AK
    J Cell Sci; 2017 Feb; 130(4):815. PubMed ID: 28202605
    [No Abstract]   [Full Text] [Related]  

  • 18. Retraction: Antioxidant-induced modification of INrf2 cysteine 151 and PKC-δ-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance.
    Niture SK; Jain AK; Jaiswal AK
    J Cell Sci; 2017 Feb; 130(4):816. PubMed ID: 28202606
    [No Abstract]   [Full Text] [Related]  

  • 19. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer.
    Namani A; Matiur Rahaman M; Chen M; Tang X
    BMC Cancer; 2018 Jan; 18(1):46. PubMed ID: 29306329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase.
    Cullinan SB; Gordan JD; Jin J; Harper JW; Diehl JA
    Mol Cell Biol; 2004 Oct; 24(19):8477-86. PubMed ID: 15367669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.