BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2820405)

  • 1. Porcine polymorphonuclear leukocyte NADPH-cytochrome c reductase generates superoxide in the presence of cytochrome b559 and phospholipid.
    Sakane F; Kojima H; Takahashi K; Koyama J
    Biochem Biophys Res Commun; 1987 Aug; 147(1):71-7. PubMed ID: 2820405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic activators.
    Koshkin V; Pick E
    FEBS Lett; 1993 Jul; 327(1):57-62. PubMed ID: 8392946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purified leukocyte cytochrome b558 incorporated into liposomes catalyzes a cytosolic factor dependent diaphorase activity.
    Li J; Guillory RJ
    Biochemistry; 1997 May; 36(18):5529-37. PubMed ID: 9154936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer reactions in the NADPH oxidase system of neutrophils--involvement of an NADPH-cytochrome c reductase in the oxidase system.
    Fujii H; Kakinuma K
    Biochim Biophys Acta; 1991 Nov; 1095(3):201-9. PubMed ID: 1659905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of NADPH-cytochrome c reductase in guinea pig peritoneal macrophages stimulated with phorbol myristate acetate.
    Tamoto K; Hazeki K; Nochi H; Mori Y; Koyama J
    FEBS Lett; 1989 Feb; 244(1):159-62. PubMed ID: 2538348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide production by cytochrome b558 purified from neutrophils in a reconstituted system with an exogenous reductase.
    Isogai Y; Shiro Y; Nasuda-Kouyama A; Iizuka T
    J Biol Chem; 1991 Jul; 266(21):13481-4. PubMed ID: 1649821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of a membrane-bound NADPH-cytochrome c reductase capable of catalyzing menadione-dependent O2- formation in guinea pig polymorphonuclear leukocytes.
    Sakane F; Takahashi K; Koyama J
    J Biochem; 1984 Sep; 96(3):671-8. PubMed ID: 6094521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide production by cytochrome b559. Mechanism of cytosol-independent activation.
    Koshkin V; Pick E
    FEBS Lett; 1994 Feb; 338(3):285-9. PubMed ID: 8307196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the O2- -generating NADPH oxidase of guinea-pig polymorphonuclear leukocytes by rabbit antibody to homologous liver NADPH-cytochrome c (P-450) reductase.
    Takayama H; Iwaki S; Tamoto K; Koyama J
    Biochim Biophys Acta; 1984 Jun; 799(2):151-7. PubMed ID: 6203553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b559.
    Knoller S; Shpungin S; Pick E
    J Biol Chem; 1991 Feb; 266(5):2795-804. PubMed ID: 1847135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of NADPH-cytochrome c reductase from porcine polymorphonuclear leukocytes.
    Kojima H; Takahashi K; Sakane F; Koyama J
    J Biochem; 1987 Nov; 102(5):1083-8. PubMed ID: 3125159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559.
    Gabig TG; Lefker BA
    J Biol Chem; 1985 Apr; 260(7):3991-5. PubMed ID: 2984192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH-cytochrome c reductase from human neutrophil membranes: purification, characterization and localization.
    Nisimoto Y; Otsuka-Murakami H; Iwata S
    Biochem J; 1994 Feb; 297 ( Pt 3)(Pt 3):585-93. PubMed ID: 8110198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deficient flavoprotein component of the NADPH-dependent O2-.-generating oxidase in the neutrophils from three male patients with chronic granulomatous disease.
    Gabig TG; Lefker BA
    J Clin Invest; 1984 Mar; 73(3):701-5. PubMed ID: 6707199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the superoxide-producing oxidase of neutrophils. O2 is necessary for the fast reduction of cytochrome b-245 by NADPH.
    Cross AR; Parkinson JF; Jones OT
    Biochem J; 1985 Mar; 226(3):881-4. PubMed ID: 2985050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase of neutrophils forms superoxide anion but does not reduce cytochrome c and dichlorophenolindophenol.
    Bellavite P; della Bianca V; Serra MC; Papini E; Rossi F
    FEBS Lett; 1984 May; 170(1):157-61. PubMed ID: 6327373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.
    Cross AR; Parkinson JF; Jones OT
    Biochem J; 1984 Oct; 223(2):337-44. PubMed ID: 6497852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide oxidase and reductase activity of cytochrome b559 in photosystem II.
    Tiwari A; Pospísil P
    Biochim Biophys Acta; 2009 Aug; 1787(8):985-94. PubMed ID: 19345666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that cytochrome b559 is involved in superoxide production in photosystem II: effect of synthetic short-chain plastoquinones in a cytochrome b559 tobacco mutant.
    Pospísil P; Snyrychová I; Kruk J; Strzałka K; Naus J
    Biochem J; 2006 Jul; 397(2):321-7. PubMed ID: 16569212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biphasic reduction of cytochrome b559 by plastoquinol in photosystem II membrane fragments: evidence for two types of cytochrome b559/plastoquinone redox equilibria.
    Kaminskaya OP; Shuvalov VA
    Biochim Biophys Acta; 2013 Apr; 1827(4):471-83. PubMed ID: 23357332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.