BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2820405)

  • 61. Recombinant interferon gamma augments phagocyte superoxide production and X-chronic granulomatous disease gene expression in X-linked variant chronic granulomatous disease.
    Ezekowitz RA; Orkin SH; Newburger PE
    J Clin Invest; 1987 Oct; 80(4):1009-16. PubMed ID: 2821069
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro.
    Koshkin V; Lotan O; Pick E
    Biochim Biophys Acta; 1997 Apr; 1319(2-3):139-46. PubMed ID: 9131041
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transfer of cytochrome b 5 and NADPH cytochrome c reductase between membranes.
    Poensgen J; Ullrich V
    Biochim Biophys Acta; 1980 Feb; 596(2):248-63. PubMed ID: 6766740
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A theoretical study on effect of the initial redox state of cytochrome b559 on maximal chlorophyll fluorescence level (F(M)): implications for photoinhibition of photosystem II.
    Lazár D; Ilík P; Kruk J; Strzałka K; Naus J
    J Theor Biol; 2005 Mar; 233(2):287-300. PubMed ID: 15619367
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Polyamines stimulate superoxide production in human neutrophils activated by N-fMet-Leu-Phe but not by phorbol myristate acetate.
    Guarnieri C; Georgountzos A; Caldarera I; Flamigni F; Ligabue A
    Biochim Biophys Acta; 1987 Sep; 930(2):135-9. PubMed ID: 3040118
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Properties of photoreduction reaction of cytochrome b559 in photosystem II membrane fragments.
    Kaminskaya OP; Erokhina LG; Shuvalov VA
    Dokl Biochem Biophys; 2010; 432():133-6. PubMed ID: 20886748
    [No Abstract]   [Full Text] [Related]  

  • 67. The PS II complex possesses a quinone-binding site that differs from Q(A) and Q(B) and interacts with cytochrome b559.
    Kaminskaya OP; Shuvalov VA; Renger G
    Dokl Biochem Biophys; 2007; 412():12-4. PubMed ID: 17506344
    [No Abstract]   [Full Text] [Related]  

  • 68. Study of the nature of biphasic reduction of cytochrome b559 by plastoquinol in photosystem II membrane fragments.
    Kaminskaya OP; Erokhina LG; Shuvalov VA
    Dokl Biochem Biophys; 2012; 447():273-6. PubMed ID: 23288566
    [No Abstract]   [Full Text] [Related]  

  • 69. Spin trap evidence for production of superoxide radical anions by purified NADPH-cytochrome P-450 reductase.
    Bösterling B; Trudell JR
    Biochem Biophys Res Commun; 1981 Jan; 98(2):569-75. PubMed ID: 6261743
    [No Abstract]   [Full Text] [Related]  

  • 70. Towards an understanding of the nature of the redox forms of cytochrome b559 in photosystem II.
    Kaminskaya OP; Shuvalov VA
    Dokl Biochem Biophys; 2013; 450():151-4. PubMed ID: 23824458
    [No Abstract]   [Full Text] [Related]  

  • 71. Involvement of cytochrome b-245 in the respiratory burst of human neutrophils.
    Borregaard N; Simons ER; Clark RA
    Infect Immun; 1982 Dec; 38(3):1301-3. PubMed ID: 7152673
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of modification of cytochrome c on its reactions with superoxide and NADPH:cytochrome P-450 reductase.
    Finkelstein E; Rosen GM; Patton SE; Cohen MS; Rauckman EJ
    Biochem Biophys Res Commun; 1981 Oct; 102(3):1008-15. PubMed ID: 6272810
    [No Abstract]   [Full Text] [Related]  

  • 73. Characterization of multiple active forms of the NADPH dehydrogenase component of the oxidase complex from rabbit peritoneal neutrophils by photolabeling with an arylazido derivative of NADP+.
    Laporte F; Doussiere J; Vignais PV
    Biochem Biophys Res Commun; 1990 Apr; 168(1):78-84. PubMed ID: 2109611
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Differential scanning calorimetric studies of photosystem II: evidence for a structural role for cytochrome b559 in the oxygen-evolving complex.
    Thompson LK; Sturtevant JM; Brudvig GW
    Biochemistry; 1986 Oct; 25(20):6161-9. PubMed ID: 3790512
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluation and improvements of a rapid microassay for measuring superoxide anion production by phagocytes. 2. Biochemical aspects.
    Leslie RG; Allen R
    J Immunol Methods; 1987 Nov; 103(2):261-6. PubMed ID: 2822807
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Co-localization of superoxide generation and NADP formation in plasma membrane fractions from human neutrophils.
    Shirley PS; Bass DA; Lees CJ; Parce JW; Waite BM; Dechatelet LR
    Inflammation; 1984 Sep; 8(3):323-35. PubMed ID: 6092276
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A quantitative fluorimetric assay for the determination of oxidant production by polymorphonuclear leukocytes: its use in the simultaneous fluorimetric assay of cellular activation processes.
    Hyslop PA; Sklar LA
    Anal Biochem; 1984 Aug; 141(1):280-6. PubMed ID: 6093625
    [TBL] [Abstract][Full Text] [Related]  

  • 78. New perspectives in chronic granulomatous disease.
    Ezekowitz RA; Newburger PE
    J Clin Immunol; 1988 Nov; 8(6):419-25. PubMed ID: 2851609
    [No Abstract]   [Full Text] [Related]  

  • 79. Cytochrome b-245.
    Segal AW; Harper AM; Cross AR; Jones OT
    Methods Enzymol; 1986; 132():378-94. PubMed ID: 3821520
    [No Abstract]   [Full Text] [Related]  

  • 80. Introduction: the oxygen sensor and erythropoietin gene regulation.
    Goldwasser E
    Ann N Y Acad Sci; 1994 Apr; 718():1-2. PubMed ID: 8185218
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.