BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28204586)

  • 1. Use of mariner transposases for one-step delivery and integration of DNA in prokaryotes and eukaryotes by transfection.
    Trubitsyna M; Michlewski G; Finnegan DJ; Elfick A; Rosser SJ; Richardson JM; French CE
    Nucleic Acids Res; 2017 Jun; 45(10):e89. PubMed ID: 28204586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics.
    Tosi LR; Beverley SM
    Nucleic Acids Res; 2000 Feb; 28(3):784-90. PubMed ID: 10637331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Basis for the Inverted Repeat Preferences of mariner Transposases.
    Trubitsyna M; Grey H; Houston DR; Finnegan DJ; Richardson JM
    J Biol Chem; 2015 May; 290(21):13531-40. PubMed ID: 25869132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon.
    Muñoz-López M; Siddique A; Bischerour J; Lorite P; Chalmers R; Palomeque T
    J Mol Biol; 2008 Oct; 382(3):567-72. PubMed ID: 18675277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposase subunit architecture and its relationship to genome size and the rate of transposition in prokaryotes and eukaryotes.
    Blundell-Hunter G; Tellier M; Chalmers R
    Nucleic Acids Res; 2018 Oct; 46(18):9637-9646. PubMed ID: 30184164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of mariner transposition: the peculiar case of Mos1.
    Jaillet J; Genty M; Cambefort J; Rouault JD; Augé-Gouillou C
    PLoS One; 2012; 7(8):e43365. PubMed ID: 22905263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-binding activity and subunit interaction of the mariner transposase.
    Zhang L; Dawson A; Finnegan DJ
    Nucleic Acids Res; 2001 Sep; 29(17):3566-75. PubMed ID: 11522826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization and comparison of two closely related active mariner transposases.
    Trubitsyna M; Morris ER; Finnegan DJ; Richardson JM
    Biochemistry; 2014 Feb; 53(4):682-9. PubMed ID: 24404958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Counterselection and co-delivery of transposon and transposase functions for Sleeping Beauty-mediated transposition in cultured mammalian cells.
    Converse AD; Belur LR; Gori JL; Liu G; Amaya F; Aguilar-Cordova E; Hackett PB; McIvor RS
    Biosci Rep; 2004 Dec; 24(6):577-94. PubMed ID: 16158196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeric Mos1 and piggyBac transposases result in site-directed integration.
    Maragathavally KJ; Kaminski JM; Coates CJ
    FASEB J; 2006 Sep; 20(11):1880-2. PubMed ID: 16877528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target capture during Mos1 transposition.
    Pflieger A; Jaillet J; Petit A; Augé-Gouillou C; Renault S
    J Biol Chem; 2014 Jan; 289(1):100-11. PubMed ID: 24269942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1.
    Zhang JK; Pritchett MA; Lampe DJ; Robertson HM; Metcalf WW
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9665-70. PubMed ID: 10920201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes.
    Goryshin IY; Jendrisak J; Hoffman LM; Meis R; Reznikoff WS
    Nat Biotechnol; 2000 Jan; 18(1):97-100. PubMed ID: 10625401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro transposition of ISY100, a bacterial insertion sequence belonging to the Tc1/mariner family.
    Feng X; Colloms SD
    Mol Microbiol; 2007 Sep; 65(6):1432-43. PubMed ID: 17680987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical properties of DNA components affecting the transposition efficiency of the mariner Mos1 element.
    Casteret S; Chbab N; Cambefort J; Augé-Gouillou C; Bigot Y; Rouleux-Bonnin F
    Mol Genet Genomics; 2009 Nov; 282(5):531-46. PubMed ID: 19774400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inversion and transposition of Tc1 transposon of C. elegans in mammalian cells.
    Li ZH; Liu DP; Wang J; Guo ZC; Yin WX; Liang CC
    Somat Cell Mol Genet; 1998 Nov; 24(6):363-9. PubMed ID: 10763415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mos1 transposon-based transformation of fish cell lines using baculoviral vectors.
    Yokoo M; Fujita R; Nakajima Y; Yoshimizu M; Kasai H; Asano S; Bando H
    Biochem Biophys Res Commun; 2013 Sep; 439(1):18-22. PubMed ID: 23958306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposon mutagenesis of the anaerobic commensal, Bacteroides fragilis, using the EZ::TN5 transposome.
    Veeranagouda Y; Husain F; Wexler HM
    FEMS Microbiol Lett; 2012 Aug; 333(2):94-100. PubMed ID: 22639975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characterization of a mariner transposon pKKma].
    Zhang C; Shi L; Yu Y; Key H
    Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):366-71. PubMed ID: 26065279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target site selection by the mariner-like element, Mos1.
    Crénès G; Moundras C; Demattei MV; Bigot Y; Petit A; Renault S
    Genetica; 2010 May; 138(5):509-17. PubMed ID: 19629719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.