These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 28204872)

  • 21. Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing.
    Fu QJ; Nogaki G
    J Assoc Res Otolaryngol; 2005 Mar; 6(1):19-27. PubMed ID: 15735937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of S-shaped input-output functions for noise suppression in cochlear implants.
    Kasturi K; Loizou PC
    Ear Hear; 2007 Jun; 28(3):402-11. PubMed ID: 17485989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interleaved Processors Improve Cochlear Implant Patients' Spectral Resolution.
    Aronoff JM; Stelmach J; Padilla M; Landsberger DM
    Ear Hear; 2016; 37(2):e85-90. PubMed ID: 26656190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners.
    Jones H; Kan A; Litovsky RY
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25385244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of stimulation rate on speech recognition with cochlear implants.
    Friesen LM; Shannon RV; Cruz RJ
    Audiol Neurootol; 2005; 10(3):169-84. PubMed ID: 15724088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speech intelligibility as a function of the number of channels of stimulation for normal-hearing listeners and patients with cochlear implants.
    Dorman MF; Loizou PC
    Am J Otol; 1997 Nov; 18(6 Suppl):S113-4. PubMed ID: 9391623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Opinions on cochlear implant use in senior MED-EL patients.
    Anderson I; D'Haese PS; Pitterl M
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(5):283-9. PubMed ID: 16707916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of FM-receiver gain on speech-recognition performance of adults with cochlear implants.
    Schafer EC; Wolfe J; Lawless T; Stout B
    Int J Audiol; 2009 Apr; 48(4):196-203. PubMed ID: 19363720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cochlear implant outcomes in adults and adolescents with early-onset hearing loss.
    Caposecco A; Hickson L; Pedley K
    Ear Hear; 2012; 33(2):209-20. PubMed ID: 21934504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cochlear implants with fine structure processing improve speech and tone perception in Mandarin-speaking adults.
    Chen X; Liu B; Liu S; Mo L; Li Y; Kong Y; Zheng J; Li Y; Gong S; Han D
    Acta Otolaryngol; 2013 Jul; 133(7):733-8. PubMed ID: 23768059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Objective methods of fitting speech processors of cochlear implants Combi-40/40+ and Tempo+: impedance technique].
    Petrov SM; Shchukina AA
    Vestn Otorinolaringol; 2007; (5):20-2. PubMed ID: 18163073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of rehabilitation for prelingual deaf children who use cochlear implants in conjunction with hearing aids in the opposite ears].
    Tian Y; Zhou H; Zhang J; Yang D; Xu Y; Guo Y
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2012 Oct; 26(19):868-70, 873. PubMed ID: 23285948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of cochlear implant electrode insertion on middle-ear function as measured by intra-operative laser Doppler vibrometry.
    Donnelly N; Bibas A; Jiang D; Bamiou DE; Santulli C; Jeronimidis G; Fitzgerald O'Connor A
    J Laryngol Otol; 2009 Jul; 123(7):723-9. PubMed ID: 19138455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cochlear implantation in children with inner ear malformations.
    Woolley AL; Jenison V; Stroer BS; Lusk RP; Bahadori RS; Wippold FJ
    Ann Otol Rhinol Laryngol; 1998 Jun; 107(6):492-500. PubMed ID: 9635459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Benefit of a commercially available cochlear implant processor with dual-microphone beamforming: a multi-center study.
    Wolfe J; Parkinson A; Schafer EC; Gilden J; Rehwinkel K; Mansanares J; Coughlan E; Wright J; Torres J; Gannaway S
    Otol Neurotol; 2012 Jun; 33(4):553-60. PubMed ID: 22588233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Research advance of implementing schemes of cochlear implant and its speech processing algorithms].
    Han X; Nie K; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Jun; 20(2):340-4. PubMed ID: 12856615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of electrically evoked auditory brainstem response in cochlear implantation of children with inner ear malformations.
    Kim AH; Kileny PR; Arts HA; El-Kashlan HK; Telian SA; Zwolan TA
    Otol Neurotol; 2008 Aug; 29(5):626-34. PubMed ID: 18520627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term improvement of speech perception with the fine structure processing coding strategy in cochlear implants.
    Kleine Punte A; De Bodt M; Van de Heyning P
    ORL J Otorhinolaryngol Relat Spec; 2014; 76(1):36-43. PubMed ID: 24685836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.