BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 28205309)

  • 1. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.
    Kasesaz Y; Khalafi H; Rahmani F
    Appl Radiat Isot; 2013 Dec; 82():55-9. PubMed ID: 23954283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2012 Dec; 70(12):2755-62. PubMed ID: 23041781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.
    Kasesaz Y; Rahmani F; Khalafi H
    Appl Radiat Isot; 2015 Dec; 106():34-7. PubMed ID: 26298435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.
    Liu Z; Li G; Liu L
    Appl Radiat Isot; 2014 Apr; 86():1-6. PubMed ID: 24448270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerator-based epithermal neutron beam design for neutron capture therapy.
    Yanch JC; Zhou XL; Shefer RE; Klinkowstein RE
    Med Phys; 1992; 19(3):709-21. PubMed ID: 1324392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory.
    Chadha M; Capala J; Coderre JA; Elowitz EH; Iwai J; Joel DD; Liu HB; Wielopolski L; Chanana AD
    Int J Radiat Oncol Biol Phys; 1998 Mar; 40(4):829-34. PubMed ID: 9531367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of head phantom size on 10B and 1H[n,gamma]2H dose distributions for a broad field accelerator epithermal neutron source for BNCT.
    Gupta N; Niemkiewicz J; Blue TE; Gahbauer R; Qu TX
    Med Phys; 1993; 20(2 Pt 1):395-404. PubMed ID: 8497231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.
    Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.
    Wheeler FJ; Nigg DW; Capala J; Watkins PR; Vroegindeweij C; Auterinen I; Seppälä T; Bleuel D
    Med Phys; 1999 Jul; 26(7):1237-44. PubMed ID: 10435523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms.
    Koivunoro H; Seppälä T; Uusi-Simola J; Merimaa K; Kotiluoto P; Serén T; Kortesniemi M; Auterinen I; Savolainen S
    Phys Med Biol; 2010 Jun; 55(12):3515-33. PubMed ID: 20508317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data.
    Zamenhof R; Redmond E; Solares G; Katz D; Riley K; Kiger S; Harling O
    Int J Radiat Oncol Biol Phys; 1996 May; 35(2):383-97. PubMed ID: 8635948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.
    Ye SJ
    Phys Med Biol; 1999 Feb; 44(2):447-61. PubMed ID: 10070794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved dose targeting for a clinical epithermal neutron capture beam using optional (6)Li filtration.
    Binns PJ; Riley KJ; Ostrovsky Y; Gao W; Albritton JR; Kiger WS; Harling OK
    Int J Radiat Oncol Biol Phys; 2007 Apr; 67(5):1484-91. PubMed ID: 17394946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.