These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 28205511)
1. Controllable quantized conductance for multilevel data storage applications using conductive bridge random access memory. Aga FG; Woo J; Song J; Park J; Lim S; Sung C; Hwang H Nanotechnology; 2017 Mar; 28(11):115707. PubMed ID: 28205511 [TBL] [Abstract][Full Text] [Related]
2. Insights on the variability of Cu filament formation in the SiO Maudet F; Hammud A; Wollgarten M; Deshpande V; Dubourdieu C Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36806199 [TBL] [Abstract][Full Text] [Related]
3. Synaptic Plasticity and Quantized Conductance States in TiN-Nanoparticles-Based Memristor for Neuromorphic System. Mahata C; Ismail M; Kang M; Kim S Nanoscale Res Lett; 2022 Jun; 17(1):58. PubMed ID: 35687194 [TBL] [Abstract][Full Text] [Related]
4. Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories. Celano U; Giammaria G; Goux L; Belmonte A; Jurczak M; Vandervorst W Nanoscale; 2016 Jul; 8(29):13915-23. PubMed ID: 27441315 [TBL] [Abstract][Full Text] [Related]
5. Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer. Zhao X; Liu S; Niu J; Liao L; Liu Q; Xiao X; Lv H; Long S; Banerjee W; Li W; Si S; Liu M Small; 2017 Sep; 13(35):. PubMed ID: 28234422 [TBL] [Abstract][Full Text] [Related]
6. Rational Design on Controllable Cation Injection with Improved Conductive-Bridge Random Access Memory by Glancing Angle Deposition Technology toward Neuromorphic Application. Shih YC; Shen YC; Cheng YK; Chaudhary M; Yang TY; Yu YJ; Chueh YL ACS Appl Mater Interfaces; 2021 Nov; 13(46):55470-55480. PubMed ID: 34775743 [TBL] [Abstract][Full Text] [Related]
7. Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO2 resistive memory on silicon. Hu C; McDaniel MD; Posadas A; Demkov AA; Ekerdt JG; Yu ET Nano Lett; 2014 Aug; 14(8):4360-7. PubMed ID: 25072099 [TBL] [Abstract][Full Text] [Related]
8. Highly durable and flexible gallium-based oxide conductive-bridging random access memory. Gan KJ; Liu PT; Chien TC; Ruan DB; Sze SM Sci Rep; 2019 Oct; 9(1):14141. PubMed ID: 31578400 [TBL] [Abstract][Full Text] [Related]
9. Anisotropic Magnetoresistance of Nano-conductive Filament in Co/HfO Li L; Liu Y; Teng J; Long S; Guo Q; Zhang M; Wu Y; Yu G; Liu Q; Lv H; Liu M Nanoscale Res Lett; 2017 Dec; 12(1):210. PubMed ID: 28335585 [TBL] [Abstract][Full Text] [Related]
10. Silicon compatible Sn-based resistive switching memory. Sonde S; Chakrabarti B; Liu Y; Sasikumar K; Lin J; Stan L; Divan R; Ocola LE; Rosenmann D; Choudhury P; Ni K; Sankaranarayanan SKRS; Datta S; Guha S Nanoscale; 2018 May; 10(20):9441-9449. PubMed ID: 29663006 [TBL] [Abstract][Full Text] [Related]
11. Controlled inter-state switching between quantized conductance states in resistive devices for multilevel memory. Deswal S; Malode RR; Kumar A; Kumar A RSC Adv; 2019 Mar; 9(17):9494-9499. PubMed ID: 35520720 [TBL] [Abstract][Full Text] [Related]
12. Observation of Quantized and Partial Quantized Conductance in Polymer-Suspended Graphene Nanoplatelets. Kang Y; Ruan H; Claus RO; Heremans J; Orlowski M Nanoscale Res Lett; 2016 Dec; 11(1):179. PubMed ID: 27044308 [TBL] [Abstract][Full Text] [Related]
13. Bi Verma D; Chen TC; Liu B; Lai CS Heliyon; 2023 Dec; 9(12):e22512. PubMed ID: 38107308 [TBL] [Abstract][Full Text] [Related]
14. Effect of dysprosium and lutetium metal buffer layers on the resistive switching characteristics of Cu-Sn alloy-based conductive-bridge random access memory. Vishwanath SK; Woo H; Jeon S Nanotechnology; 2018 Sep; 29(38):385207. PubMed ID: 29911987 [TBL] [Abstract][Full Text] [Related]
15. A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States. Nandakumar SR; Minvielle M; Nagar S; Dubourdieu C; Rajendran B Nano Lett; 2016 Mar; 16(3):1602-8. PubMed ID: 26849776 [TBL] [Abstract][Full Text] [Related]
16. Atomic View of Filament Growth in Electrochemical Memristive Elements. Lv H; Xu X; Sun P; Liu H; Luo Q; Liu Q; Banerjee W; Sun H; Long S; Li L; Liu M Sci Rep; 2015 Aug; 5():13311. PubMed ID: 26293982 [TBL] [Abstract][Full Text] [Related]
17. Natural Acidic Polysaccharide-Based Memristors for Transient Electronics: Highly Controllable Quantized Conductance for Integrated Memory and Nonvolatile Logic Applications. Zhao X; Xu J; Xie D; Wang Z; Xu H; Lin Y; Hu J; Liu Y Adv Mater; 2021 Dec; 33(52):e2104023. PubMed ID: 34958496 [TBL] [Abstract][Full Text] [Related]
18. Oxygen Concentration Effect on Conductive Bridge Random Access Memory of InWZnO Thin Film. Hsu CC; Liu PT; Gan KJ; Ruan DB; Sze SM Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578520 [TBL] [Abstract][Full Text] [Related]
19. Conductance quantization in a Ag filament-based polymer resistive memory. Gao S; Zeng F; Chen C; Tang G; Lin Y; Zheng Z; Song C; Pan F Nanotechnology; 2013 Aug; 24(33):335201. PubMed ID: 23893907 [TBL] [Abstract][Full Text] [Related]
20. Influence of the Chalcogen Element on the Filament Stability in CuIn(Te,Se,S) Ahmad T; Devulder W; Opsomer K; Minjauw M; Celano U; Hantschel T; Vandervorst W; Goux L; Kar GS; Detavernier C ACS Appl Mater Interfaces; 2018 May; 10(17):14835-14842. PubMed ID: 29652471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]