BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28205643)

  • 1. Optical Switching Using Transition from Dipolar to Charge Transfer Plasmon Modes in Ge
    Ahmadivand A; Gerislioglu B; Sinha R; Karabiyik M; Pala N
    Sci Rep; 2017 Feb; 7():42807. PubMed ID: 28205643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon hybridization model generalized to conductively bridged nanoparticle dimers.
    Liu L; Wang Y; Fang Z; Zhao K
    J Chem Phys; 2013 Aug; 139(6):064310. PubMed ID: 23947858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances.
    Wen F; Zhang Y; Gottheim S; King NS; Zhang Y; Nordlander P; Halas NJ
    ACS Nano; 2015 Jun; 9(6):6428-35. PubMed ID: 25986388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Charge Transfer Plasmon Metadevices.
    Gerislioglu B; Ahmadivand A
    Research (Wash D C); 2020; 2020():9468692. PubMed ID: 32055799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study on the transition of plasmonic resonance modes in double-ring dimers by conductive junctions in the terahertz regime.
    Zhang H; Li C; Zhang C; Zhang X; Gu J; Jin B; Han J; Zhang W
    Opt Express; 2016 Nov; 24(24):27415-27422. PubMed ID: 27906313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoengineering of conductively coupled metallic nanoparticles towards selective resonance modes within the near-infrared regime.
    Hadilou N; Souri S; Navid HA; Sadighi Bonabi R; Anvari A
    Sci Rep; 2022 May; 12(1):7829. PubMed ID: 35550525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An asymmetric aluminum active quantum plasmonic device.
    Mokkath JH; Henzie J
    Phys Chem Chem Phys; 2020 Jan; 22(3):1416-1421. PubMed ID: 31859295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically Tunable All-PCM Visible Plasmonics.
    Sreekanth KV; Medwal R; Das CM; Gupta M; Mishra M; Yong KT; Rawat RS; Singh R
    Nano Lett; 2021 May; 21(9):4044-4050. PubMed ID: 33900781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable narrowband shortwave-infrared absorber made of a nanodisk-based metasurface and a phase-change material Ge
    Zhang S; Zhou K; Cheng Q; Lu L; Li B; Song J; Luo Z
    Appl Opt; 2020 Jul; 59(21):6309-6314. PubMed ID: 32749294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient dynamic tunable metasurface based on Ge
    Liu Z; Zhang B; Li Y; Lou Y; Lian Y; Jiang C; Wang J
    Appl Opt; 2023 Jul; 62(20):5508-5515. PubMed ID: 37706869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Modulation of Plasmonic Resonances in Graphene-Integrated Triangular Dimers at Terahertz Frequencies.
    Li Q; Wang S; Chen T
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks.
    Qu Y; Cai L; Luo H; Lu J; Qiu M; Li Q
    Opt Express; 2018 Feb; 26(4):4279-4287. PubMed ID: 29475279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast tunable chirped phase-change metamaterial with a low power.
    Cao T; Wei C; Mao L
    Opt Express; 2015 Feb; 23(4):4092-105. PubMed ID: 25836447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phase-change thin film-tuned photonic crystal device.
    Liu L; Mahmood R; Wei L; Hillier AC; Lu M
    Nanotechnology; 2019 Jan; 30(4):045203. PubMed ID: 30468679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity.
    Dasgupta A; Kumar GV
    Appl Opt; 2012 Apr; 51(11):1688-93. PubMed ID: 22505158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies.
    Ahmadivand A; Sinha R; Gerislioglu B; Karabiyik M; Pala N; Shur M
    Opt Lett; 2016 Nov; 41(22):5333-5336. PubMed ID: 27842126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical transport and sensing in plexcitonic nanocavities.
    Pérez-González O; Aizpurua J; Zabala N
    Opt Express; 2013 Jul; 21(13):15847-58. PubMed ID: 23842371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical metallization cell with solid phase tunable Ge
    Zhang Z; Wang Y; Wang G; Mu J; Ma M; He Y; Yang R; Li H
    Sci Rep; 2018 Aug; 8(1):12101. PubMed ID: 30108234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres.
    Jiang N; Ruan Q; Qin F; Wang J; Lin HQ
    Nanoscale; 2015 Aug; 7(29):12516-26. PubMed ID: 26139347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.