These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2820610)

  • 1. Hydroxyl radical mediates the endothelium-dependent relaxation produced by bradykinin in mouse cerebral arterioles.
    Rosenblum WI
    Circ Res; 1987 Oct; 61(4):601-3. PubMed ID: 2820610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in endothelium-dependent cerebral dilation by bradykinin and acetylcholine.
    Kontos HA; Wei EP; Kukreja RC; Ellis EF; Hess ML
    Am J Physiol; 1990 May; 258(5 Pt 2):H1261-6. PubMed ID: 2337161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of impaired endothelium-dependent cerebral vasodilatation in response to bradykinin in hypertensive rats.
    Yang ST; Mayhan WG; Faraci FM; Heistad DD
    Stroke; 1991 Sep; 22(9):1177-82. PubMed ID: 1926261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition by arachidonate of cerebral arteriolar dilation from acetylcholine.
    Kontos HA; Wei EP; Povlishock JT; Kukreja RC; Hess ML
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H665-71. PubMed ID: 2538081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. George E. Brown memorial lecture. Oxygen radicals in cerebral vascular injury.
    Kontos HA
    Circ Res; 1985 Oct; 57(4):508-16. PubMed ID: 2994903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of free radical generation on mouse pial arterioles: probable role of hydroxyl radicals.
    Rosenblum WI
    Am J Physiol; 1983 Jul; 245(1):H139-42. PubMed ID: 6307066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial dependent relaxation demonstrated in vivo in cerebral arterioles.
    Rosenblum WI
    Stroke; 1986; 17(3):494-7. PubMed ID: 3715949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical-dependent inactivation of guanylate cyclase in cerebral arterioles by methylene blue and by LY83583.
    Kontos HA; Wei EP
    Stroke; 1993 Mar; 24(3):427-34. PubMed ID: 8095358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective impairment of endothelium-dependent relaxation by sevoflurane: oxygen free radicals participation.
    Yoshida K; Okabe E
    Anesthesiology; 1992 Mar; 76(3):440-7. PubMed ID: 1539857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial and nonendothelial cyclooxygenase mediate rabbit pial arteriole dilation by bradykinin.
    Copeland JR; Willoughby KA; Tynan TM; Moore SF; Ellis EF
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H458-66. PubMed ID: 7530923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats.
    Kontos HA; Wei EP; Povlishock JT; Christman CW
    Circ Res; 1984 Sep; 55(3):295-303. PubMed ID: 6432360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-arginine suffusion restores response to acetylcholine in brain arterioles with damaged endothelium.
    Rosenblum WI; Nelson GH; Shimizu T
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H961-4. PubMed ID: 1566916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-NMMA in brain microcirculation of mice is inhibited by blockade of cyclooxygenase and by superoxide dismutase.
    Rosenblum WI; Nishimura H; Nelson GH
    Am J Physiol; 1992 May; 262(5 Pt 2):H1343-9. PubMed ID: 1590436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelium dependence of dilation of pial arterioles in mouse brain by calcium ionophore.
    Rosenblum WI; Nelson GH
    Stroke; 1988 Nov; 19(11):1379-82. PubMed ID: 3142111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense evidence for two functionally active forms of nitric oxide synthase in brain microvascular endothelium.
    Rosenblum WI; Murata S
    Biochem Biophys Res Commun; 1996 Jul; 224(2):535-43. PubMed ID: 8702423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rabbit polymorphonuclear neutrophils elicit endothelium-dependent contraction in vascular smooth muscle.
    Ohlstein EH; Nichols AJ
    Circ Res; 1989 Oct; 65(4):917-24. PubMed ID: 2551532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein synthesis and rapid recovery of endothelium-dependent dilation after endothelial injury of pial arterioles.
    Rosenblum WI; Nelson GH; Murata S
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H512-5. PubMed ID: 7530925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of oxygen radicals on cerebral arterioles.
    Wei EP; Christman CW; Kontos HA; Povlishock JT
    Am J Physiol; 1985 Feb; 248(2 Pt 2):H157-62. PubMed ID: 3918462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nitric oxide and free radicals in the contractile response to non-preactivated leukocytes.
    Kennedy S; Work L; Ferris P; Miller A; McManus B; Wadsworth RM; Wainwright CL
    Eur J Pharmacol; 1998 Mar; 345(3):269-77. PubMed ID: 9592026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.