These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 28206761)
1. Molecular Cobalt Complexes with Pendant Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to Formic Acid. Roy S; Sharma B; Pécaut J; Simon P; Fontecave M; Tran PD; Derat E; Artero V J Am Chem Soc; 2017 Mar; 139(10):3685-3696. PubMed ID: 28206761 [TBL] [Abstract][Full Text] [Related]
2. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Bullock RM; Helm ML Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983 [TBL] [Abstract][Full Text] [Related]
3. Thermochemical and mechanistic studies of electrocatalytic hydrogen production by cobalt complexes containing pendant amines. Wiedner ES; Appel AM; DuBois DL; Bullock RM Inorg Chem; 2013 Dec; 52(24):14391-403. PubMed ID: 24261463 [TBL] [Abstract][Full Text] [Related]
5. Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Wilson AD; Shoemaker RK; Miedaner A; Muckerman JT; DuBois DL; DuBois MR Proc Natl Acad Sci U S A; 2007 Apr; 104(17):6951-6. PubMed ID: 17360385 [TBL] [Abstract][Full Text] [Related]
6. Electrocatalytic and Photocatalytic Reduction of CO Wang JW; Huang HH; Sun JK; Ouyang T; Zhong DC; Lu TB ChemSusChem; 2018 Mar; 11(6):1025-1031. PubMed ID: 29385321 [TBL] [Abstract][Full Text] [Related]
7. High catalytic rates for hydrogen production using nickel electrocatalysts with seven-membered cyclic diphosphine ligands containing one pendant amine. Stewart MP; Ho MH; Wiese S; Lindstrom ML; Thogerson CE; Raugei S; Bullock RM; Helm ML J Am Chem Soc; 2013 Apr; 135(16):6033-46. PubMed ID: 23384205 [TBL] [Abstract][Full Text] [Related]
8. Ligand-Controlled Product Selectivity in Electrochemical Carbon Dioxide Reduction Using Manganese Bipyridine Catalysts. Rønne MH; Cho D; Madsen MR; Jakobsen JB; Eom S; Escoudé É; Hammershøj HCD; Nielsen DU; Pedersen SU; Baik MH; Skrydstrup T; Daasbjerg K J Am Chem Soc; 2020 Mar; 142(9):4265-4275. PubMed ID: 32022558 [TBL] [Abstract][Full Text] [Related]
9. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase. Chen X; Jing Y; Yang X Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505 [TBL] [Abstract][Full Text] [Related]
10. Proton-Assisted Reduction of CO2 by Cobalt Aminopyridine Macrocycles. Chapovetsky A; Do TH; Haiges R; Takase MK; Marinescu SC J Am Chem Soc; 2016 May; 138(18):5765-8. PubMed ID: 27092968 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, protonation, and reduction of ruthenium-peroxo complexes with pendent nitrogen bases. Tronic TA; Kaminsky W; Coggins MK; Mayer JM Inorg Chem; 2012 Oct; 51(20):10916-28. PubMed ID: 23035629 [TBL] [Abstract][Full Text] [Related]
12. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion. Costentin C; Robert M; Savéant JM Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053 [TBL] [Abstract][Full Text] [Related]
13. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen. Zee DZ; Chantarojsiri T; Long JR; Chang CJ Acc Chem Res; 2015 Jul; 48(7):2027-36. PubMed ID: 26101803 [TBL] [Abstract][Full Text] [Related]
14. Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts. Ho MH; O'Hagan M; Dupuis M; DuBois DL; Bullock RM; Shaw WJ; Raugei S Dalton Trans; 2015 Jun; 44(24):10969-79. PubMed ID: 25999141 [TBL] [Abstract][Full Text] [Related]
15. Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO Chapovetsky A; Welborn M; Luna JM; Haiges R; Miller TF; Marinescu SC ACS Cent Sci; 2018 Mar; 4(3):397-404. PubMed ID: 29632886 [TBL] [Abstract][Full Text] [Related]
16. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media. Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038 [TBL] [Abstract][Full Text] [Related]
17. Electroreduction of CO Dey S; Todorova TK; Fontecave M; Mougel V Angew Chem Int Ed Engl; 2020 Sep; 59(36):15726-15733. PubMed ID: 32673413 [TBL] [Abstract][Full Text] [Related]
18. The role of pendant amines in the breaking and forming of molecular hydrogen catalyzed by nickel complexes. Raugei S; Chen S; Ho MH; Ginovska-Pangovska B; Rousseau RJ; Dupuis M; DuBois DL; Bullock RM Chemistry; 2012 May; 18(21):6493-506. PubMed ID: 22532421 [TBL] [Abstract][Full Text] [Related]
19. Studies of a series of [Ni(P(R)2N(Ph)2)2(CH3CN)]2+ complexes as electrocatalysts for H2 production: substituent variation at the phosphorus atom of the P2N2 ligand. Kilgore UJ; Stewart MP; Helm ML; Dougherty WG; Kassel WS; DuBois MR; DuBois DL; Bullock RM Inorg Chem; 2011 Nov; 50(21):10908-18. PubMed ID: 21999814 [TBL] [Abstract][Full Text] [Related]
20. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex. Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]