These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28207058)

  • 1. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why?
    Ji X; Verspagen JMH; Stomp M; Huisman J
    J Exp Bot; 2017 Jun; 68(14):3815-3828. PubMed ID: 28207058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strains of the Harmful Cyanobacterium Microcystis aeruginosa Differ in Gene Expression and Activity of Inorganic Carbon Uptake Systems at Elevated CO2 Levels.
    Sandrini G; Jakupovic D; Matthijs HC; Huisman J
    Appl Environ Microbiol; 2015 Nov; 81(22):7730-9. PubMed ID: 26319871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid adaptation of harmful cyanobacteria to rising CO2.
    Sandrini G; Ji X; Verspagen JM; Tann RP; Slot PC; Luimstra VM; Schuurmans JM; Matthijs HC; Huisman J
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):9315-20. PubMed ID: 27482094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis.
    Sandrini G; Matthijs HCP; Verspagen JMH; Muyzer G; Huisman J
    ISME J; 2014 Mar; 8(3):589-600. PubMed ID: 24132080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How rising CO
    Visser PM; Verspagen JMH; Sandrini G; Stal LJ; Matthijs HCP; Davis TW; Paerl HW; Huisman J
    Harmful Algae; 2016 Apr; 54():145-159. PubMed ID: 28073473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment.
    Tan X; Zhang D; Duan Z; Parajuli K; Hu J
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):344-352. PubMed ID: 31788731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diel Variation in Gene Expression of the CO2-Concentrating Mechanism during a Harmful Cyanobacterial Bloom.
    Sandrini G; Tann RP; Schuurmans JM; van Beusekom SA; Matthijs HC; Huisman J
    Front Microbiol; 2016; 7():551. PubMed ID: 27148233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyanobacteria vs green algae: which group has the edge?
    Beardall J; Raven JA
    J Exp Bot; 2017 Jun; 68(14):3697-3699. PubMed ID: 28911057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The harmful cyanobacterium Microcystis aeruginosa PCC7806 is more resistant to hydrogen peroxide at elevated CO
    Qin H; Sandrini G; Piel T; Slot PC; Huisman J; Visser PM
    Harmful Algae; 2023 Oct; 128():102482. PubMed ID: 37714576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colonial morphology weakens the response of different inorganic carbon uptake systems to CO
    Zheng B; Du Y; Deng Y; Zhao T; Dong P; Shi J; Wu Z
    Harmful Algae; 2023 Oct; 128():102491. PubMed ID: 37714577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic plasticity of carbon fixation stimulates cyanobacterial blooms at elevated CO
    Ji X; Verspagen JMH; Van de Waal DB; Rost B; Huisman J
    Sci Adv; 2020 Feb; 6(8):eaax2926. PubMed ID: 32128392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2.
    Van de Waal DB; Verspagen JM; Finke JF; Vournazou V; Immers AK; Kardinaal WE; Tonk L; Becker S; Van Donk E; Visser PM; Huisman J
    ISME J; 2011 Sep; 5(9):1438-50. PubMed ID: 21390081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in Fremyella diplosiphon.
    Rohnke BA; Rodríguez Pérez KJ; Montgomery BL
    mBio; 2020 May; 11(3):. PubMed ID: 32457252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2.
    Sandrini G; Cunsolo S; Schuurmans JM; Matthijs HC; Huisman J
    Front Microbiol; 2015; 6():401. PubMed ID: 25999931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibiotic pollution promotes dominance by harmful cyanobacteria: A case study examining norfloxacin exposure in competition experiments.
    Li JJ; Chao JJ; McKay RML; Xu RB; Wang T; Xu J; Zhang JL; Chang XX
    J Phycol; 2021 Apr; 57(2):677-688. PubMed ID: 33483964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels.
    Verspagen JM; Van de Waal DB; Finke JF; Visser PM; Huisman J
    Ecol Lett; 2014 Aug; 17(8):951-60. PubMed ID: 24813339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fateful Meeting of Two Phytoplankton Species-Chemical vs. Cell-Cell-Interactions in Co-Cultures of the Green Algae Oocystis marsonii and the Cyanobacterium Microcystis aeruginosa.
    Dunker S; Althammer J; Pohnert G; Wilhelm C
    Microb Ecol; 2017 Jul; 74(1):22-32. PubMed ID: 28064361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus.
    Yang J; Tang H; Zhang X; Zhu X; Huang Y; Yang Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4794-4802. PubMed ID: 29198029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems.
    Li W; Xu X; Fujibayashi M; Niu Q; Tanaka N; Nishimura O
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19847-60. PubMed ID: 27421856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes.
    Verspagen JM; Van de Waal DB; Finke JF; Visser PM; Van Donk E; Huisman J
    PLoS One; 2014; 9(8):e104325. PubMed ID: 25119996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.