BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28207258)

  • 1. Procyanidin A2 and Its Degradation Products in Raw, Fermented, and Roasted Cocoa.
    De Taeye C; Caullet G; Eyamo Evina VJ; Collin S
    J Agric Food Chem; 2017 Mar; 65(8):1715-1723. PubMed ID: 28207258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of (-)-epicatechin and procyanidin B2 in aqueous and lipidic model systems. first evidence of "chemical" flavan-3-ol oligomers in processed cocoa.
    De Taeye C; Cibaka ML; Jerkovic V; Collin S
    J Agric Food Chem; 2014 Sep; 62(36):9002-16. PubMed ID: 25167469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of new flavan-3-ol derivatives in fermented cocoa beans.
    Fayeulle N; Vallverdu-Queralt A; Meudec E; Hue C; Boulanger R; Cheynier V; Sommerer N
    Food Chem; 2018 Sep; 259():207-212. PubMed ID: 29680045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and quantification of free and bound phenolic compounds contained in the high-molecular weight melanoidin fractions derived from two different types of cocoa beans by UHPLC-DAD-ESI-HR-MS
    Oracz J; Nebesny E; Żyżelewicz D
    Food Res Int; 2019 Jan; 115():135-149. PubMed ID: 30599925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intravariety Diversity of Bioactive Compounds in Trinitario Cocoa Beans with Different Degrees of Fermentation.
    Febrianto NA; Zhu F
    J Agric Food Chem; 2019 Mar; 67(11):3150-3158. PubMed ID: 30794392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients.
    Payne MJ; Hurst WJ; Miller KB; Rank C; Stuart DA
    J Agric Food Chem; 2010 Oct; 58(19):10518-27. PubMed ID: 20843086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roasting conditions for preserving cocoa flavan-3-ol monomers and oligomers: interesting behaviour of Criollo clones.
    De Taeye C; Bodart M; Caullet G; Collin S
    J Sci Food Agric; 2017 Sep; 97(12):4001-4008. PubMed ID: 28194790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roasting-induced changes in cocoa beans with respect to the mood pyramid.
    Lemarcq V; Tuenter E; Bondarenko A; Van de Walle D; De Vuyst L; Pieters L; Sioriki E; Dewettinck K
    Food Chem; 2020 Dec; 332():127467. PubMed ID: 32663755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting.
    Kothe L; Zimmermann BF; Galensa R
    Food Chem; 2013 Dec; 141(4):3656-63. PubMed ID: 23993533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity in Composition of Bioactive Compounds Among 26 Cocoa Genotypes.
    Febrianto NA; Zhu F
    J Agric Food Chem; 2019 Aug; 67(34):9501-9509. PubMed ID: 31334642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of Anthocyanins through Cocoa Fermentation. Emergence of New Polyphenolic Dimers.
    De Taeye C; Eyamo Evina VJ; Caullet G; Niemenak N; Collin S
    J Agric Food Chem; 2016 Nov; 64(46):8876-8885. PubMed ID: 27934293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography.
    Esatbeyoglu T; Wray V; Winterhalter P
    Food Chem; 2015 Jul; 179():278-89. PubMed ID: 25722166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near infra-red characterization of changes in flavan-3-ol derivatives in cocoa (Theobroma cacao L.) as a function of fermentation temperature.
    Hue C; Brat P; Gunata Z; Samaniego I; Servent A; Morel G; Kapitan A; Boulanger R; Davrieux F
    J Agric Food Chem; 2014 Oct; 62(41):10136-42. PubMed ID: 25259956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (-)-Catechin in cocoa and chocolate: occurrence and analysis of an atypical flavan-3-ol enantiomer.
    Kofink M; Papagiannopoulos M; Galensa R
    Molecules; 2007 Jul; 12(7):1274-88. PubMed ID: 17909484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective removal of the violet color produced by anthocyanins in procyanidin-rich unfermented cocoa extracts.
    Wallace TC; Giusti MM
    J Food Sci; 2011 Sep; 76(7):C1010-7. PubMed ID: 22417537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC.
    Natsume M; Osakabe N; Yamagishi M; Takizawa T; Nakamura T; Miyatake H; Hatano T; Yoshida T
    Biosci Biotechnol Biochem; 2000 Dec; 64(12):2581-7. PubMed ID: 11210120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between procyanidin and flavor contents of cocoa liquors from different origins.
    Counet C; Ouwerx C; Rosoux D; Collin S
    J Agric Food Chem; 2004 Oct; 52(20):6243-9. PubMed ID: 15453694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GC-MS detection of chiral markers in cocoa beans of different quality and geographic origin.
    Caligiani A; Cirlini M; Palla G; Ravaglia R; Arlorio M
    Chirality; 2007 May; 19(4):329-34. PubMed ID: 17357118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HPLC-MS-based design of experiments approach on cocoa roasting.
    Andruszkiewicz PJ; Corno M; Kuhnert N
    Food Chem; 2021 Oct; 360():129694. PubMed ID: 33989875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and quantification of flavan-3-ols and procyanidins with low degree of polymerization in nuts, cereals, and legumes.
    Bittner K; Rzeppa S; Humpf HU
    J Agric Food Chem; 2013 Sep; 61(38):9148-54. PubMed ID: 23971434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.