BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28207813)

  • 1. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis.
    Skwark MJ; Croucher NJ; Puranen S; Chewapreecha C; Pesonen M; Xu YY; Turner P; Harris SR; Beres SB; Musser JM; Parkhill J; Bentley SD; Aurell E; Corander J
    PLoS Genet; 2017 Feb; 13(2):e1006508. PubMed ID: 28207813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of β-lactam action in Streptococcus pneumoniae: the piperacillin paradox.
    Philippe J; Gallet B; Morlot C; Denapaite D; Hakenbeck R; Chen Y; Vernet T; Zapun A
    Antimicrob Agents Chemother; 2015 Jan; 59(1):609-21. PubMed ID: 25385114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of genes required for fitness of group A Streptococcus in human blood.
    Le Breton Y; Mistry P; Valdes KM; Quigley J; Kumar N; Tettelin H; McIver KS
    Infect Immun; 2013 Mar; 81(3):862-75. PubMed ID: 23297387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking bacterial genome-wide association study methods using simulated genomes and phenotypes.
    Saber MM; Shapiro BJ
    Microb Genom; 2020 Mar; 6(3):. PubMed ID: 32100713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution mapping of cancer cell networks using co-functional interactions.
    Boyle EA; Pritchard JK; Greenleaf WJ
    Mol Syst Biol; 2018 Dec; 14(12):e8594. PubMed ID: 30573688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Prediction of Bacterial Genotype-Phenotype Associations Using Interpretable Pangenome-Spanning Regressions.
    Lees JA; Mai TT; Galardini M; Wheeler NE; Horsfield ST; Parkhill J; Corander J
    mBio; 2020 Jul; 11(4):. PubMed ID: 32636251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenomic analysis of natural selection pressure in Streptococcus genomes.
    Anisimova M; Bielawski J; Dunn K; Yang Z
    BMC Evol Biol; 2007 Aug; 7():154. PubMed ID: 17760998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ongoing purifying selection on intergenic spacers in group A streptococcus.
    Luo H; Tang J; Friedman R; Hughes AL
    Infect Genet Evol; 2011 Mar; 11(2):343-8. PubMed ID: 21115137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting co-selection through excess linkage disequilibrium in bacterial genomes.
    Mallawaarachchi S; Tonkin-Hill G; Pöntinen AK; Calland JK; Gladstone RA; Arredondo-Alonso S; MacAlasdair N; Thorpe HA; Top J; Sheppard SK; Balding D; Croucher NJ; Corander J
    NAR Genom Bioinform; 2024 Jun; 6(2):lqae061. PubMed ID: 38846349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-wide atlas of antibiotic susceptibility targets and pathways to tolerance.
    Leshchiner D; Rosconi F; Sundaresh B; Rudmann E; Ramirez LMN; Nishimoto AT; Wood SJ; Jana B; Buján N; Li K; Gao J; Frank M; Reeve SM; Lee RE; Rock CO; Rosch JW; van Opijnen T
    Nat Commun; 2022 Jun; 13(1):3165. PubMed ID: 35672367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct Network Patterns Emerge from Cartesian and XOR Epistasis Models: A Comparative Network Science Analysis.
    Sha Z; Freda PJ; Bhandary P; Ghosh A; Matsumoto N; Moore JH; Hu T
    Res Sq; 2024 May; ():. PubMed ID: 38826481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures.
    Harrow GL; Lees JA; Hanage WP; Lipsitch M; Corander J; Colijn C; Croucher NJ
    ISME J; 2021 May; 15(5):1523-1538. PubMed ID: 33408365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From genotype to phenotype: systems biology meets natural variation.
    Benfey PN; Mitchell-Olds T
    Science; 2008 Apr; 320(5875):495-7. PubMed ID: 18436781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic explanations for restricted evolutionary paths that emerge from gene regulatory networks.
    Cotterell J; Sharpe J
    PLoS One; 2013; 8(4):e61178. PubMed ID: 23613807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Peas to Disease: Modifier Genes, Network Resilience, and the Genetics of Health.
    Riordan JD; Nadeau JH
    Am J Hum Genet; 2017 Aug; 101(2):177-191. PubMed ID: 28777930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria.
    Rodionov DA
    Chem Rev; 2007 Aug; 107(8):3467-97. PubMed ID: 17636889
    [No Abstract]   [Full Text] [Related]  

  • 17. Unveiling recent and ongoing adaptive selection in human populations.
    Gao Z
    PLoS Biol; 2024 Jan; 22(1):e3002469. PubMed ID: 38236800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive analysis of pneumococcal two-component system regulatory networks.
    Pettersen JS; Nielsen FD; Andreassen PR; Møller-Jensen J; Jørgensen MG
    NAR Genom Bioinform; 2024 Jun; 6(2):lqae039. PubMed ID: 38650915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomics annotation of a statistical epistasis network associated with bladder cancer susceptibility.
    Hu T; Pan Q; Andrew AS; Langer JM; Cole MD; Tomlinson CR; Karagas MR; Moore JH
    BioData Min; 2014 Apr; 7(1):5. PubMed ID: 24725556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Master regulators of biological systems in higher dimensions.
    Eble H; Joswig M; Lamberti L; Ludington WB
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2300634120. PubMed ID: 38096409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.