These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28207853)

  • 1. Numerical simulations of atmospheric dispersion of iodine-131 by different models.
    Leelőssy Á; Mészáros R; Kovács A; Lagzi I; Kovács T
    PLoS One; 2017; 12(2):e0172312. PubMed ID: 28207853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of numerical models to predict the atmospheric dispersion of radionuclides.
    Leelőssy Á; Lagzi I; Kovács A; Mészáros R
    J Environ Radioact; 2018 Feb; 182():20-33. PubMed ID: 29179047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic dose assessment by Large Eddy Simulation of the near-range atmospheric dispersion.
    Vervecken L; Camps J; Meyers J
    J Radiol Prot; 2015 Mar; 35(1):165-78. PubMed ID: 25634888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model.
    Rolph GD; Ngan F; Draxler RR
    J Environ Radioact; 2014 Oct; 136():41-55. PubMed ID: 24878719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing-Tianjin-Hebei, China.
    Miao Y; Liu S; Zheng Y; Wang S; Chen B; Zheng H; Zhao J
    J Environ Sci (China); 2015 Apr; 30():9-20. PubMed ID: 25872705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Evaluation of an Air-monitoring Network Using Atmospheric Transport Modeling and Frequency of Detection Methods.
    Rood AS; Sondrup AJ; Ritter PD
    Health Phys; 2016 Apr; 110(4):311-27. PubMed ID: 26910025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-way coupling of WRF with a Gaussian dispersion model: a focused fine-scale air pollution assessment on southern Mediterranean.
    Snoun H; Bellakhal G; Kanfoudi H; Zhang X; Chahed J
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22892-22906. PubMed ID: 31177418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emission rate estimation through data assimilation of gamma dose measurements in a Lagrangian atmospheric dispersion model.
    Tsiouri V; Kovalets I; Andronopoulos S; Bartzis JG
    Radiat Prot Dosimetry; 2012 Jan; 148(1):34-44. PubMed ID: 21349880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air quality modeling for policy development.
    Reid N; Misra PK; Amman M; Hales J
    J Toxicol Environ Health A; 2007 Feb; 70(3-4):295-310. PubMed ID: 17365592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima Nuclear Power Plant.
    Leelossy A; Mészáros R; Lagzi I
    J Environ Radioact; 2011 Dec; 102(12):1117-21. PubMed ID: 21856053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion of radionuclides released into a stable planetary boundary layer using a Monte Carlo model.
    Basit A; Shoaib Raza S; Irfan N
    J Radiol Prot; 2006 Dec; 26(4):375-87. PubMed ID: 17146122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion.
    Terada H; Katata G; Chino M; Nagai H
    J Environ Radioact; 2012 Oct; 112():141-54. PubMed ID: 22721917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filtering effect of wind flow turbulence on atmospheric pollutant dispersion.
    Yassin MF
    Environ Monit Assess; 2012 Jun; 184(6):3749-60. PubMed ID: 21769556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic risk assessment for long-range atmospheric transport of radionuclides.
    Lauritzen B; Baklanov A; Mahura A; Mikkelsen T; Sørensen JH
    J Environ Radioact; 2007; 96(1-3):110-5. PubMed ID: 17482728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time simulation of accidental passive transport of radioactive pollutant from a proposed nuclear power plant.
    Ahmad I; Muhammad OB; Ahmed R; Ahmad S
    J Radiol Prot; 2021 Nov; 41(4):. PubMed ID: 33784638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainties in short term prediction of atmospheric dispersion of radionuclides. A case study of a hypothetical accident in a nuclear floating power plant off the West coast of Norway.
    Berge E; Andronopoulos S; Klein H; Lind OC; Salbu B; Syed N; Ulimoen M
    J Environ Radioact; 2021 Jul; 233():106587. PubMed ID: 33773365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local atmospheric factors that enhance air-borne dispersion of coronavirus - High-fidelity numerical simulation of COVID19 case study in real-time.
    Bhaganagar K; Bhimireddy S
    Environ Res; 2020 Dec; 191():110170. PubMed ID: 32950514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.