BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 28208060)

  • 41. RNA-binding protein misregulation in microsatellite expansion disorders.
    Goodwin M; Swanson MS
    Adv Exp Med Biol; 2014; 825():353-88. PubMed ID: 25201111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fourteen and counting: unraveling trinucleotide repeat diseases.
    Cummings CJ; Zoghbi HY
    Hum Mol Genet; 2000 Apr; 9(6):909-16. PubMed ID: 10767314
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Triplet repeats in transcripts: structural insights into RNA toxicity.
    Galka-Marciniak P; Urbanek MO; Krzyzosiak WJ
    Biol Chem; 2012 Nov; 393(11):1299-315. PubMed ID: 23052488
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Mechanisms in Pentanucleotide Repeat Diseases.
    Loureiro JR; Castro AF; Figueiredo AS; Silveira I
    Cells; 2022 Jan; 11(2):. PubMed ID: 35053321
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Repeat-associated non-AUG translation in neuromuscular diseases: mechanisms and therapeutic insights.
    Fujino Y; Mori K; Nagai Y
    J Biochem; 2023 Mar; 173(4):273-281. PubMed ID: 36748359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Small non-coding RNAs add complexity to the RNA pathogenic mechanisms in trinucleotide repeat expansion diseases.
    Martí E; Estivill X
    Front Mol Neurosci; 2013 Dec; 6():45. PubMed ID: 24348326
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RNA FISH for detecting expanded repeats in human diseases.
    Urbanek MO; Krzyzosiak WJ
    Methods; 2016 Apr; 98():115-123. PubMed ID: 26615955
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular diagnosis of neurogenetic disorders involving trinucleotide repeat expansions.
    Tan EC; Lai PS
    Expert Rev Mol Diagn; 2005 Jan; 5(1):101-9. PubMed ID: 15723596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of trinucleotide repeats instabilities: the necessities of repeat non-B secondary structure formation and the roles of cellular trans-acting factors.
    Pan XF
    Yi Chuan Xue Bao; 2006 Jan; 33(1):1-11. PubMed ID: 16450581
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins.
    Kino Y; Washizu C; Kurosawa M; Oma Y; Hattori N; Ishiura S; Nukina N
    Hum Mol Genet; 2015 Feb; 24(3):740-56. PubMed ID: 25274774
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PABP2 polyalanine tract expansion causes intranuclear inclusions in oculopharyngeal muscular dystrophy.
    Shanmugam V; Dion P; Rochefort D; Laganière J; Brais B; Rouleau GA
    Ann Neurol; 2000 Nov; 48(5):798-802. PubMed ID: 11079546
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
    Vatovec S; Kovanda A; Rogelj B
    Neurobiol Aging; 2014 Oct; 35(10):2421.e1-2421.e12. PubMed ID: 24836899
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CAG-polyglutamine-repeat mutations: independence from gene context.
    Ordway JM; Cearley JA; Detloff PJ
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1083-8. PubMed ID: 10434310
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.
    Wojtkowiak-Szlachcic A; Taylor K; Stepniak-Konieczna E; Sznajder LJ; Mykowska A; Sroka J; Thornton CA; Sobczak K
    Nucleic Acids Res; 2015 Mar; 43(6):3318-31. PubMed ID: 25753670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Huntington's disease--like 2 is associated with CUG repeat-containing RNA foci.
    Rudnicki DD; Holmes SE; Lin MW; Thornton CA; Ross CA; Margolis RL
    Ann Neurol; 2007 Mar; 61(3):272-82. PubMed ID: 17387722
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Developmental insights into the pathology of and therapeutic strategies for DM1: Back to the basics.
    Chau A; Kalsotra A
    Dev Dyn; 2015 Mar; 244(3):377-90. PubMed ID: 25504326
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural features of trinucleotide repeats associated with DNA expansion.
    Kovtun IV; Goellner G; McMurray CT
    Biochem Cell Biol; 2001; 79(3):325-36. PubMed ID: 11467746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RAN Translation in Huntington Disease.
    Bañez-Coronel M; Ayhan F; Tarabochia AD; Zu T; Perez BA; Tusi SK; Pletnikova O; Borchelt DR; Ross CA; Margolis RL; Yachnis AT; Troncoso JC; Ranum LP
    Neuron; 2015 Nov; 88(4):667-77. PubMed ID: 26590344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Small molecule targeting of RNA structures in neurological disorders.
    Angelbello AJ; Chen JL; Disney MD
    Ann N Y Acad Sci; 2020 Jul; 1471(1):57-71. PubMed ID: 30964958
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Repeat-Associated Non-ATG Translation in Neurological Diseases.
    Zu T; Pattamatta A; Ranum LPW
    Cold Spring Harb Perspect Biol; 2018 Dec; 10(12):. PubMed ID: 29891563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.