These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28208259)

  • 1. Ultrasensitive Electrochemical Detection of miRNA-21 Using a Zinc Finger Protein Specific to DNA-RNA Hybrids.
    Fang CS; Kim KS; Yu B; Jon S; Kim MS; Yang H
    Anal Chem; 2017 Feb; 89(3):2024-2031. PubMed ID: 28208259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling.
    Xia N; Zhang Y; Wei X; Huang Y; Liu L
    Anal Chim Acta; 2015 Jun; 878():95-101. PubMed ID: 26002330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Beads-Based Sensor with Tailored Sensitivity for Rapid and Single-Step Amperometric Determination of miRNAs.
    Vargas E; Torrente-Rodríguez RM; Ruiz-Valdepeñas Montiel V; Povedano E; Pedrero M; Montoya JJ; Campuzano S; Pingarrón JM
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29120349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel zinc finger protein-based amperometric biosensor for miRNA determination.
    Povedano E; Ruiz-Valdepeñas Montiel V; Gamella M; Serafín V; Pedrero M; Moranova L; Bartosik M; Montoya JJ; Yáñez-Sedeño P; Campuzano S; Pingarrón JM
    Anal Bioanal Chem; 2020 Aug; 412(21):5031-5041. PubMed ID: 31745609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive and direct electrochemical detection of double-stranded DNA utilizing alkaline phosphatase-labelled zinc finger proteins.
    Noh S; Ha DT; Yang H; Kim MS
    Analyst; 2015 Jun; 140(12):3947-52. PubMed ID: 25969923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibodies directed to RNA/DNA hybrids: an electrochemical immunosensor for microRNAs detection using graphene-composite electrodes.
    Tran HV; Piro B; Reisberg S; Duc HT; Pham MC
    Anal Chem; 2013 Sep; 85(17):8469-74. PubMed ID: 23930580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive RNA-RNA hybridization-based integrated nanostructured-disposable electrode for highly sensitive determination of miRNAs in cancer cells.
    Zouari M; Campuzano S; Pingarrón JM; Raouafi N
    Biosens Bioelectron; 2017 May; 91():40-45. PubMed ID: 27987409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification.
    Shuai HL; Huang KJ; Xing LL; Chen YX
    Biosens Bioelectron; 2016 Dec; 86():337-345. PubMed ID: 27392235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JAZ requires the double-stranded RNA-binding zinc finger motifs for nuclear localization.
    Yang M; May WS; Ito T
    J Biol Chem; 1999 Sep; 274(39):27399-406. PubMed ID: 10488071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemical microRNA sensing platform based on tungsten diselenide nanosheets and competitive RNA-RNA hybridization.
    Chen YX; Zhang WJ; Huang KJ; Zheng M; Mao YC
    Analyst; 2017 Dec; 142(24):4843-4851. PubMed ID: 29160869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis.
    Khan N; Cheng J; Pezacki JP; Berezovski MV
    Anal Chem; 2011 Aug; 83(16):6196-201. PubMed ID: 21714529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA.
    Tao Y; Yin D; Jin M; Fang J; Dai T; Li Y; Li Y; Pu Q; Xie G
    Biosens Bioelectron; 2017 Oct; 96():99-105. PubMed ID: 28475957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24.
    Li F; Peng J; Wang J; Tang H; Tan L; Xie Q; Yao S
    Biosens Bioelectron; 2014 Apr; 54():158-64. PubMed ID: 24270466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification.
    Yu Y; Chen Z; Shi L; Yang F; Pan J; Zhang B; Sun D
    Anal Chem; 2014 Aug; 86(16):8200-5. PubMed ID: 25054588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of interactions between the double-stranded RNA-binding zinc finger protein JAZ and nucleic acids.
    Burge RG; Martinez-Yamout MA; Dyson HJ; Wright PE
    Biochemistry; 2014 Mar; 53(9):1495-510. PubMed ID: 24521053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification.
    Xia N; Liu K; Zhou Y; Li Y; Yi X
    Int J Nanomedicine; 2017; 12():5013-5022. PubMed ID: 28761341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimetallic Pd-Pt supported graphene promoted enzymatic redox cycling for ultrasensitive electrochemical quantification of microRNA from cell lysates.
    Cheng FF; Zhang JJ; He TT; Shi JJ; Abdel-Halim ES; Zhu JJ
    Analyst; 2014 Aug; 139(16):3860-5. PubMed ID: 24976373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Washing-Free Electrochemical Detection of Amplified Double-Stranded DNAs Using a Zinc Finger Protein.
    Fang CS; Kim KS; Ha DT; Kim MS; Yang H
    Anal Chem; 2018 Apr; 90(7):4776-4782. PubMed ID: 29553715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of phosphatase- and redox cycling-based immunosensors and its application to ultrasensitive detection of troponin I.
    Akanda MR; Aziz MA; Jo K; Tamilavan V; Hyun MH; Kim S; Yang H
    Anal Chem; 2011 May; 83(10):3926-33. PubMed ID: 21486093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive electroanalysis of low-level free microRNAs in blood by maximum signal amplification of catalytic silver deposition using alkaline phosphatase-incorporated gold nanoclusters.
    Si Y; Sun Z; Zhang N; Qi W; Li S; Chen L; Wang H
    Anal Chem; 2014 Oct; 86(20):10406-14. PubMed ID: 25242013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.