BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28208262)

  • 1. Prussian Blue as a Highly Sensitive and Background-Free Resonant Raman Reporter.
    Yin Y; Li Q; Ma S; Liu H; Dong B; Yang J; Liu D
    Anal Chem; 2017 Feb; 89(3):1551-1557. PubMed ID: 28208262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When Prussian Blue Meets Porous Gold Nanoparticles: A High Signal-to-Background Surface-Enhanced Raman Scattering Probe for Cellular Biomarker Imaging.
    Li X; Zeng E; Di H; Li Q; Ji J; Yang J; Liu D
    Adv Biosyst; 2019 Jul; 3(7):e1900046. PubMed ID: 32648671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable Quantification of pH Variation in Live Cells Using Prussian Blue-Caged Surface-Enhanced Raman Scattering Probes.
    Bi Y; Di H; Zeng E; Li Q; Li W; Yang J; Liu D
    Anal Chem; 2020 Jul; 92(14):9574-9582. PubMed ID: 32600040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Background-Free SERS Nanosensor for Endogenous Hydrogen Sulfide Detection Based on Prussian Blue-Coated Gold Nanobipyramids.
    Chen J; Cheng L; Yang Y; Liu Y; Su C; He Y; You M; Lin Z; Hong G
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14467-14473. PubMed ID: 38491944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive
    Nicolson F; Andreiuk B; Andreou C; Hsu HT; Rudder S; Kircher MF
    Theranostics; 2019; 9(20):5899-5913. PubMed ID: 31534527
    [No Abstract]   [Full Text] [Related]  

  • 6. Surface enhanced resonance Raman spectroscopy (SERRS) for probing through plastic and tissue barriers using a handheld spectrometer.
    Nicolson F; Jamieson LE; Mabbott S; Plakas K; Shand NC; Detty MR; Graham D; Faulds K
    Analyst; 2018 Dec; 143(24):5965-5973. PubMed ID: 30225477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer.
    Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY
    Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoassay using surface-enhanced Raman scattering based on aggregation of reporter-labeled immunogold nanoparticles.
    Chen JW; Lei Y; Liu XJ; Jiang JH; Shen GL; Yu RQ
    Anal Bioanal Chem; 2008 Sep; 392(1-2):187-93. PubMed ID: 18597080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application.
    Liu YQ; Zhu W; Hu JM; Shen AG
    Nanoscale Adv; 2021 Nov; 3(23):6568-6579. PubMed ID: 36132655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman spectroscopy-based, homogeneous, multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles.
    Wang Y; Tang LJ; Jiang JH
    Anal Chem; 2013 Oct; 85(19):9213-20. PubMed ID: 23998432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amperometric immunosensor based on multiwalled carbon nanotubes/Prussian blue/nanogold-modified electrode for determination of α-fetoprotein.
    Jiang W; Yuan R; Chai YQ; Yin B
    Anal Biochem; 2010 Dec; 407(1):65-71. PubMed ID: 20678463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures.
    Rong Z; Wang C; Wang J; Wang D; Xiao R; Wang S
    Biosens Bioelectron; 2016 Oct; 84():15-21. PubMed ID: 27149164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monodispersed plasmonic Prussian blue nanoparticles for zero-background SERS/MRI-guided phototherapy.
    Zhu W; Gao MY; Zhu Q; Chi B; Zeng LW; Hu JM; Shen AG
    Nanoscale; 2020 Feb; 12(5):3292-3301. PubMed ID: 31971195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic-bead-based sub-femtomolar immunoassay using resonant Raman scattering signals of ZnS nanoparticles.
    Ding Y; Cong T; Chu X; Jia Y; Hong X; Liu Y
    Anal Bioanal Chem; 2016 Jul; 408(18):5013-9. PubMed ID: 27173389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization.
    Zhou W; Li Q; Liu H; Yang J; Liu D
    ACS Nano; 2017 Apr; 11(4):3532-3541. PubMed ID: 28264152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prussian blue-gold nanoparticles-ionic liquid functionalized reduced graphene oxide nanocomposite as label for ultrasensitive electrochemical immunoassay of alpha-fetoprotein.
    Gao Q; Liu N; Ma Z
    Anal Chim Acta; 2014 Jun; 829():15-21. PubMed ID: 24856397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared photothermal therapy of Prussian-blue-functionalized lanthanide-ion-doped inorganic/plasmonic multifunctional nanostructures for the selective targeting of HER2-expressing breast cancer cells.
    Parchur AK; Li Q; Zhou A
    Biomater Sci; 2016 Nov; 4(12):1781-1791. PubMed ID: 27768147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexing potential of NIR resonant and non-resonant Raman reporters for bio-imaging applications.
    Eremina OE; Schaefer S; Czaja AT; Awad S; Lim MA; Zavaleta C
    Analyst; 2023 Nov; 148(23):5915-5925. PubMed ID: 37850265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica-Coated, Waxberry-like Surface-Enhanced Raman Resonant Scattering Tag-Pair with Near-Infrared Raman Dye Encoding: Toward
    Yin Y; Mei R; Wang Y; Zhao X; Yu Q; Liu W; Chen L
    Anal Chem; 2020 Nov; 92(21):14814-14821. PubMed ID: 33045167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of novel gold mesoflowers as SERS tags for immunoassay with improved sensitivity.
    Song C; Min L; Zhou N; Yang Y; Su S; Huang W; Wang L
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21842-50. PubMed ID: 25089331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.