These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28208327)

  • 1. Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method.
    Peng C; Geneva N; Guo Z; Wang LP
    Phys Rev E; 2017 Jan; 95(1-1):013301. PubMed ID: 28208327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffused bounce-back condition and refill algorithm for the lattice Boltzmann method.
    Krithivasan S; Wahal S; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033313. PubMed ID: 24730973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-field-based lattice Boltzmann model for liquid-gas-solid flow.
    He Q; Li Y; Huang W; Hu Y; Wang Y
    Phys Rev E; 2019 Sep; 100(3-1):033314. PubMed ID: 31639949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and assessment of the no-slip and slip boundary conditions for the discrete unified gas kinetic scheme.
    Yang L; Yu Y; Yang L; Hou G
    Phys Rev E; 2020 Feb; 101(2-1):023312. PubMed ID: 32168627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrete effects on boundary conditions of the lattice Boltzmann method for fluid flows with curved no-slip walls.
    Wang L; Tao S; Meng X; Zhang K; Lu G
    Phys Rev E; 2020 Jun; 101(6-1):063307. PubMed ID: 32688558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions.
    Chen Y; Cai Q; Xia Z; Wang M; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013303. PubMed ID: 23944579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method.
    Zhang T; Shi B; Guo Z; Chai Z; Lu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016701. PubMed ID: 22400695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrected momentum exchange method for lattice Boltzmann simulations of suspension flow.
    Lorenz E; Caiazzo A; Hoekstra AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036705. PubMed ID: 19392079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes.
    Chen Q; Zhang X; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033304. PubMed ID: 24125382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice Boltzmann model for ternary fluids with solid particles.
    He Q; Li Y; Huang W; Hu Y; Wang Y
    Phys Rev E; 2020 Mar; 101(3-1):033307. PubMed ID: 32289995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations.
    Hajabdollahi F; Premnath KN
    Phys Rev E; 2018 May; 97(5-1):053303. PubMed ID: 29906868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows.
    Guo Z; Shi B; Zhao TS; Zheng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056704. PubMed ID: 18233787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acceleration of steady-state lattice Boltzmann simulations for exterior flows.
    Liu B; Khalili A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056701. PubMed ID: 19113231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundary condition for lattice Boltzmann modeling of microscale gas flows with curved walls in the slip regime.
    Tao S; Guo Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043305. PubMed ID: 25974610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the non-Newtonian lattice Boltzmann model coupled with off-grid bounce-back scheme: Wall shear stress distributions in Ostwald-de Waele fluids flow.
    Vaseghnia H; Jettestuen E; Giljarhus KET; Aursjø O; Hiorth A
    Phys Rev E; 2024 Jul; 110(1-2):015305. PubMed ID: 39160911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media.
    Ginzburg I; Silva G; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023307. PubMed ID: 25768636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.