These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28208335)

  • 1. Reynolds number effects on the single-mode Richtmyer-Meshkov instability.
    Walchli B; Thornber B
    Phys Rev E; 2017 Jan; 95(1-1):013104. PubMed ID: 28208335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids.
    Rollin B; Andrews MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046317. PubMed ID: 21599305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability.
    Schilling O; Latini M; Don WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations.
    Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG
    Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a shock is reflected.
    Wouchuk JG; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026305. PubMed ID: 15447586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability.
    Liang H; Li QX; Shi BC; Chai ZH
    Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical scalings of the linear Richtmyer-Meshkov instability when a rarefaction is reflected.
    Cobos-Campos F; Wouchuk JG
    Phys Rev E; 2017 Jul; 96(1-1):013102. PubMed ID: 29347243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a rarefaction is reflected.
    Wouchuk JG; Sano T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023005. PubMed ID: 25768595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected.
    Campos FC; Wouchuk JG
    Phys Rev E; 2016 May; 93(5):053111. PubMed ID: 27300982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability.
    Matsuoka C; Nishihara K; Fukuda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036301. PubMed ID: 12689159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing.
    Morgan BE; Schilling O; Hartland TA
    Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical and numerical study on a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical geometry.
    Matsuoka C; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066303. PubMed ID: 17280144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface.
    Han L; Yuan J; Dong M; Fan Z
    Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.
    Elperin T; Kleeorin N; Liberman M; Lipatnikov AN; Rogachevskii I; Yu R
    Phys Rev E; 2017 Nov; 96(5-1):053111. PubMed ID: 29347758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations.
    Tritschler VK; Zubel M; Hickel S; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063001. PubMed ID: 25615181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Theory for the Growth Rate and Amplitude of the Compressible Richtmyer-Meshkov Instability at all Density Ratios.
    Zhang Q; Deng S; Guo W
    Phys Rev Lett; 2018 Oct; 121(17):174502. PubMed ID: 30411914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of phase-field lattice Boltzmann models based on the conservative Allen-Cahn equation.
    Begmohammadi A; Haghani-Hassan-Abadi R; Fakhari A; Bolster D
    Phys Rev E; 2020 Aug; 102(2-1):023305. PubMed ID: 32942360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.