These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28208338)

  • 21. Biologically Realistic Mean-Field Models of Conductance-Based Networks of Spiking Neurons with Adaptation.
    Volo MD; Romagnoni A; Capone C; Destexhe A
    Neural Comput; 2019 Apr; 31(4):653-680. PubMed ID: 30764741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
    Tuckwell HC
    J Physiol Paris; 2006; 100(1-3):88-99. PubMed ID: 17064883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of dynamical synapses on firing rate activity: a spiking neural network model.
    Khalil R; Moftah MZ; Moustafa AA
    Eur J Neurosci; 2017 Nov; 46(9):2445-2470. PubMed ID: 28921686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic Plasticity for Natural Competition in Koniocortex-Like Neural Networks.
    Peláez FJ; Aguiar-Furucho MA; Andina D
    Int J Neural Syst; 2016 Aug; 26(5):1650040. PubMed ID: 27255800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronization stability and firing transitions in two types of class I neuronal networks with short-term plasticity.
    Zhang H; Wang Q; He X; Chen G
    Neural Netw; 2014 Jan; 49():107-17. PubMed ID: 24231037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Network burst dynamics under heterogeneous cholinergic modulation of neural firing properties and heterogeneous synaptic connectivity.
    Knudstrup S; Zochowski M; Booth V
    Eur J Neurosci; 2016 May; 43(10):1321-39. PubMed ID: 26869313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning-induced synchronization and plasticity of a developing neural network.
    Chao TC; Chen CM
    J Comput Neurosci; 2005 Dec; 19(3):311-24. PubMed ID: 16502239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance.
    Litvak V; Sompolinsky H; Segev I; Abeles M
    J Neurosci; 2003 Apr; 23(7):3006-15. PubMed ID: 12684488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Joining distributed pattern processing and homeostatic plasticity in recurrent on-center off-surround shunting networks: noise, saturation, short-term memory, synaptic scaling, and BDNF.
    Chandler B; Grossberg S
    Neural Netw; 2012 Jan; 25(1):21-9. PubMed ID: 21890320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Network reconfiguration and neuronal plasticity in rhythm-generating networks.
    Koch H; Garcia AJ; Ramirez JM
    Integr Comp Biol; 2011 Dec; 51(6):856-68. PubMed ID: 21856733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic organizations and dynamical properties of weakly connected neural oscillators. II. Learning phase information.
    Hoppensteadt FC; Izhikevich EM
    Biol Cybern; 1996 Aug; 75(2):129-35. PubMed ID: 8855351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maturation of rhythmic neural network: role of central modulatory inputs.
    Fénelon V; Le Feuvre Y; Bem T; Meyrand P
    J Physiol Paris; 2003 Jan; 97(1):59-68. PubMed ID: 14706691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs.
    Pesavento MJ; Pinto DJ
    J Neurophysiol; 2012 Nov; 108(9):2452-72. PubMed ID: 22896716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks.
    Carrillo-Reid L; Lopez-Huerta VG; Garcia-Munoz M; Theiss S; Arbuthnott GW
    Int J Neural Syst; 2015 Nov; 25(7):1550026. PubMed ID: 26173906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global and local synchrony of coupled neurons in small-world networks.
    Masuda N; Aihara K
    Biol Cybern; 2004 Apr; 90(4):302-9. PubMed ID: 15085349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transient information flow in a network of excitatory and inhibitory model neurons: role of noise and signal autocorrelation.
    Mayor J; Gerstner W
    J Physiol Paris; 2004; 98(4-6):417-28. PubMed ID: 16289547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.