These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28208340)

  • 1. Scaling features of the tribology of polymer brushes of increasing grafting density around the mushroom-to-brush transition.
    Mayoral E; Klapp J; Gama Goicochea A
    Phys Rev E; 2017 Jan; 95(1-1):012505. PubMed ID: 28208340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Chain Stiffness, Grafting Density and Normal Load on the Tribological and Structural Behavior of Polymer Brushes: A Nonequilibrium-Molecular-Dynamics Study.
    Singh MK; Ilg P; Espinosa-Marzal RM; Spencer ND; Kröger M
    Polymers (Basel); 2016 Jul; 8(7):. PubMed ID: 30974530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotribology of biopolymer brushes in aqueous solution using dissipative particle dynamics simulations: an application to PEG covered liposomes in a theta solvent.
    Goicochea AG; Mayoral E; Klapp J; Pastorino C
    Soft Matter; 2014 Jan; 10(1):166-74. PubMed ID: 24652222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the kinetic friction of planar neutral and polyelectrolyte polymer brushes using molecular dynamics simulations.
    Ou Y; Sokoloff JB; Stevens MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011801. PubMed ID: 22400584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switching of friction by binary polymer brushes.
    Kumar Vyas M; Schneider K; Nandan B; Stamm M
    Soft Matter; 2008 Apr; 4(5):1024-1032. PubMed ID: 32907135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoscale simulations of the behavior of charged polymer brushes under normal compression and lateral shear forces.
    Sirchabesan M; Giasson S
    Langmuir; 2007 Sep; 23(19):9713-21. PubMed ID: 17696369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tribological Behavior of Grafted Nanoparticle on Polymer-Brushed Walls: A Dissipative Particle Dynamics Study.
    Nguyen VP; Phi PQ; Choi ST
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11988-11998. PubMed ID: 30821436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphologies of planar polyelectrolyte brushes in a poor solvent: molecular dynamics simulations and scaling analysis.
    Carrillo JM; Dobrynin AV
    Langmuir; 2009 Nov; 25(22):13158-68. PubMed ID: 19899820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of the static friction between two grafted polymer brushes.
    Mendonça AC; Goujon F; Malfreyt P; Tildesley DJ
    Phys Chem Chem Phys; 2016 Feb; 18(8):6164-74. PubMed ID: 26847471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Friction between ring polymer brushes.
    Erbaş A; Paturej J
    Soft Matter; 2015 Apr; 11(16):3139-48. PubMed ID: 25747253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Brushes Immersed in Two-Component Solvents with Pure Volume Exclusion: Effect of Solvent Molecular Shape.
    Li C; Zhang T; Yang Y; Tang P; Qiu F
    ACS Omega; 2019 Jul; 4(7):12927-12937. PubMed ID: 31460419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of brush thickness and solvent composition on the friction force response of poly(2-(methacryloyloxy)ethylphosphorylcholine) brushes.
    Zhang Z; Morse AJ; Armes SP; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2011 Mar; 27(6):2514-21. PubMed ID: 21319847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of polymer brushes: the transition from dilute to dense systems: a computer simulation study.
    Polanowski P; Sikorski A
    Soft Matter; 2021 Dec; 17(46):10516-10526. PubMed ID: 34755154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Friction between brush layers of charged and neutral bottle-brush macromolecules. molecular dynamics simulations.
    Carrillo JM; Russano D; Dobrynin AV
    Langmuir; 2011 Dec; 27(23):14599-608. PubMed ID: 22074225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations.
    Jehser M; Zifferer G; Likos CN
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotribological Investigation of Polymer Brushes with Lithographically Defined and Systematically Varying Grafting Densities.
    Zhang ZJ; Moxey M; Alswieleh A; Armes SP; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2017 Jan; 33(3):706-713. PubMed ID: 28042924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial friction and adhesion of polymer brushes.
    Landherr LJ; Cohen C; Agarwal P; Archer LA
    Langmuir; 2011 Aug; 27(15):9387-95. PubMed ID: 21696203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Many-chain effects on the co-nonsolvency of polymer brushes in a good solvent mixture.
    Park G; Jung Y
    Soft Matter; 2019 Oct; 15(39):7968-7980. PubMed ID: 31545330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer brushes for friction control: Contributions of molecular simulations.
    Abdelbar MA; Ewen JP; Dini D; Angioletti-Uberti S
    Biointerphases; 2023 Jan; 18(1):010801. PubMed ID: 36653299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grafting Density-Dependent Phase Transition Mechanism of Thermoresponsive Poly(glycidyl ether) Brushes: A Comprehensive QCM-D Study.
    Schweigerdt A; Heinen S; Stöbener DD; Weinhart M
    Langmuir; 2021 Jun; 37(23):7087-7096. PubMed ID: 34077209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.