These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28208384)

  • 1. Solving the spin-2 Gross-Pitaevskii equation using exact nonlinear dynamics and symplectic composition.
    Symes LM; Blakie PB
    Phys Rev E; 2017 Jan; 95(1-1):013311. PubMed ID: 28208384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and accurate methods for solving the time-dependent spin-1 Gross-Pitaevskii equation.
    Symes LM; McLachlan RI; Blakie PB
    Phys Rev E; 2016 May; 93(5):053309. PubMed ID: 27301007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap.
    Chin SA; Krotscheck E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036705. PubMed ID: 16241612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their instabilities.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056708. PubMed ID: 18233791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
    Thalhammer M; Abhau J
    J Comput Phys; 2012 Aug; 231(20):6665-6681. PubMed ID: 25550676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symplectic and energy-conserving algorithms for solving magnetic field trajectories.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066401. PubMed ID: 18643377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrator for general spin-s Gross-Pitaevskii systems.
    Jain M; Amin MA; Pu H
    Phys Rev E; 2023 Nov; 108(5-2):055305. PubMed ID: 38115448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourth-order algorithms for solving the multivariable Langevin equation and the Kramers equation.
    Forbert HA; Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016703. PubMed ID: 11304389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical method for evolving the dipolar projected Gross-Pitaevskii equation.
    Blakie PB; Ticknor C; Bradley AS; Martin AM; Davis MJ; Kawaguchi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016703. PubMed ID: 19658834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of matter-wave solitons in a nonlinear inductor-capacitor network through a Gross-Pitaevskii equation with time-dependent linear potential.
    Kengne E; Lakhssassi A; Liu WM
    Phys Rev E; 2017 Aug; 96(2-1):022221. PubMed ID: 28950556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of kink-dark solitons in Bose-Einstein condensates with both two- and three-body interactions.
    Mohamadou A; Wamba E; Lissouck D; Kofane TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046605. PubMed ID: 22680596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling damped acoustic waves by a dissipation-preserving conformal symplectic method.
    Cai W; Zhang H; Wang Y
    Proc Math Phys Eng Sci; 2017 Mar; 473(2199):20160798. PubMed ID: 28413345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved numerical approach for the time-independent Gross-Pitaevskii nonlinear Schrödinger equation.
    Gammal A; Frederico T; Tomio L
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2421-4. PubMed ID: 11970045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap.
    Dion CM; Cancès E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046706. PubMed ID: 12786528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inverse problem for the Gross-Pitaevskii equation.
    Malomed BA; Stepanyants YA
    Chaos; 2010 Mar; 20(1):013130. PubMed ID: 20370285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation.
    Atre R; Panigrahi PK; Agarwal GS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056611. PubMed ID: 16803061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinor dipolar bose-einstein condensates: classical spin approach.
    Takahashi M; Ghosh S; Mizushima T; Machida K
    Phys Rev Lett; 2007 Jun; 98(26):260403. PubMed ID: 17678071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.
    Yan Z
    Philos Trans A Math Phys Eng Sci; 2013 Apr; 371(1989):20120059. PubMed ID: 23509385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Traveling and solitary wave solutions to the one-dimensional Gross-Pitaevskii equation.
    Zhong WP; Belić MR; Lu Y; Huang T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016605. PubMed ID: 20365489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical method for evolving the projected Gross-Pitaevskii equation.
    Blakie PB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026704. PubMed ID: 18850970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.