These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field. Tasaka Y; Igaki K; Yanagisawa T; Vogt T; Zuerner T; Eckert S Phys Rev E; 2016 Apr; 93():043109. PubMed ID: 27176392 [TBL] [Abstract][Full Text] [Related]
5. Statistical analysis of global wind dynamics in vigorous Rayleigh-Bénard convection. Petschel K; Wilczek M; Breuer M; Friedrich R; Hansen U Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026309. PubMed ID: 21929092 [TBL] [Abstract][Full Text] [Related]
6. Flow reversals in thermally driven turbulence. Sugiyama K; Ni R; Stevens RJ; Chan TS; Zhou SQ; Xi HD; Sun C; Grossmann S; Xia KQ; Lohse D Phys Rev Lett; 2010 Jul; 105(3):034503. PubMed ID: 20867768 [TBL] [Abstract][Full Text] [Related]
8. Effect of inertia in Rayleigh-Bénard convection. Breuer M; Wessling S; Schmalzl J; Hansen U Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026302. PubMed ID: 14995554 [TBL] [Abstract][Full Text] [Related]
9. Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-Bénard convection. Lam S; Shang XD; Zhou SQ; Xia KQ Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066306. PubMed ID: 12188827 [TBL] [Abstract][Full Text] [Related]
10. Prandtl-Number Dependence of Heat Transport in Laminar Horizontal Convection. Shishkina O; Wagner S Phys Rev Lett; 2016 Jan; 116(2):024302. PubMed ID: 26824542 [TBL] [Abstract][Full Text] [Related]
11. Turbulence in rotating Rayleigh-Bénard convection in low-Prandtl-number fluids. Pharasi HK; Kannan R; Kumar K; Bhattacharjee JK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):047301. PubMed ID: 22181319 [TBL] [Abstract][Full Text] [Related]
12. Flow reversals in low-Prandtl-number Rayleigh-Bénard convection controlled by horizontal circulations. Yanagisawa T; Hamano Y; Sakuraba A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023018. PubMed ID: 26382514 [TBL] [Abstract][Full Text] [Related]
13. Roughness as a Route to the Ultimate Regime of Thermal Convection. Toppaladoddi S; Succi S; Wettlaufer JS Phys Rev Lett; 2017 Feb; 118(7):074503. PubMed ID: 28256887 [TBL] [Abstract][Full Text] [Related]
15. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection. Zhang Y; Huang YX; Jiang N; Liu YL; Lu ZM; Qiu X; Zhou Q Phys Rev E; 2017 Aug; 96(2-1):023105. PubMed ID: 28950509 [TBL] [Abstract][Full Text] [Related]
16. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling. van Reeuwijk M; Jonker HJ; Hanjalić K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036312. PubMed ID: 18517516 [TBL] [Abstract][Full Text] [Related]
17. Wind and boundary layers in Rayleigh-Bénard convection. I. Analysis and modeling. van Reeuwijk M; Jonker HJ; Hanjalić K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036311. PubMed ID: 18517515 [TBL] [Abstract][Full Text] [Related]
18. Structure of viscous boundary layers in turbulent Rayleigh-Bénard convection. du Puits R; Resagk C; Thess A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036318. PubMed ID: 19905223 [TBL] [Abstract][Full Text] [Related]
19. Thermal convection for large Prandtl numbers. Grossmann S; Lohse D Phys Rev Lett; 2001 Apr; 86(15):3316-9. PubMed ID: 11327959 [TBL] [Abstract][Full Text] [Related]
20. Instabilities in the Rayleigh-Bénard-Eckart problem. Ben Hadid H; Dridi W; Botton V; Moudjed B; Henry D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016312. PubMed ID: 23005530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]