These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 28208454)
1. Fundamental limits for cooling of linear quantum refrigerators. Freitas N; Paz JP Phys Rev E; 2017 Jan; 95(1-1):012146. PubMed ID: 28208454 [TBL] [Abstract][Full Text] [Related]
2. Quantum heat engines and refrigerators: continuous devices. Kosloff R; Levy A Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798 [TBL] [Abstract][Full Text] [Related]
3. Quantum thermodynamics of single particle systems. Ali MM; Huang WM; Zhang WM Sci Rep; 2020 Aug; 10(1):13500. PubMed ID: 32782281 [TBL] [Abstract][Full Text] [Related]
4. Quantum refrigerators and the third law of thermodynamics. Levy A; Alicki R; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070 [TBL] [Abstract][Full Text] [Related]
5. System susceptibility and bound-states in structured reservoirs. Shen HZ; Xu S; Zhou YH; Yi XX Opt Express; 2019 Oct; 27(22):31504-31521. PubMed ID: 31684385 [TBL] [Abstract][Full Text] [Related]
6. A general derivation and quantification of the third law of thermodynamics. Masanes L; Oppenheim J Nat Commun; 2017 Mar; 8():14538. PubMed ID: 28290452 [TBL] [Abstract][Full Text] [Related]
7. Asymptotic Floquet states of a periodically driven spin-boson system in the nonperturbative coupling regime. Magazzù L; Denisov S; Hänggi P Phys Rev E; 2018 Aug; 98(2-1):022111. PubMed ID: 30253481 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic limits of dynamic cooling. Allahverdyan AE; Hovhannisyan KV; Janzing D; Mahler G Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041109. PubMed ID: 22181089 [TBL] [Abstract][Full Text] [Related]
10. Cooling by heating: Restoration of the third law of thermodynamics. Sørdal VB; Bergli J; Galperin YM Phys Rev E; 2016 Mar; 93(3):032102. PubMed ID: 27078287 [TBL] [Abstract][Full Text] [Related]
12. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle. Kolář M; Gelbwaser-Klimovsky D; Alicki R; Kurizki G Phys Rev Lett; 2012 Aug; 109(9):090601. PubMed ID: 23002817 [TBL] [Abstract][Full Text] [Related]
13. Heat transport between two pure-dephasing reservoirs. Werlang T; Valente D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012143. PubMed ID: 25679606 [TBL] [Abstract][Full Text] [Related]
16. Third Law of Thermodynamics and the Scaling of Quantum Computers. Buffoni L; Gherardini S; Zambrini Cruzeiro E; Omar Y Phys Rev Lett; 2022 Oct; 129(15):150602. PubMed ID: 36269957 [TBL] [Abstract][Full Text] [Related]
17. Optimal performance of endoreversible quantum refrigerators. Correa LA; Palao JP; Adesso G; Alonso D Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062124. PubMed ID: 25615061 [TBL] [Abstract][Full Text] [Related]
18. Transient temperature dynamics of reservoirs connected through an open quantum system. Vovchenko IV; Zyablovsky AA; Pukhov AA; Andrianov ES Phys Rev E; 2024 Apr; 109(4-1):044144. PubMed ID: 38755848 [TBL] [Abstract][Full Text] [Related]
19. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law. Hsiang JT; Chou CH; Subaşı Y; Hu BL Phys Rev E; 2018 Jan; 97(1-1):012135. PubMed ID: 29448480 [TBL] [Abstract][Full Text] [Related]
20. Cooling with fermionic thermal reservoirs. Damas GG; de Assis RJ; de Almeida NG Phys Rev E; 2023 Mar; 107(3-1):034128. PubMed ID: 37073057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]