These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28208490)
1. Geometrical model for martensitic phase transitions: Understanding criticality and weak universality during microstructure growth. Torrents G; Illa X; Vives E; Planes A Phys Rev E; 2017 Jan; 95(1-1):013001. PubMed ID: 28208490 [TBL] [Abstract][Full Text] [Related]
2. Avalanche criticality in thermal-driven martensitic transitions: the asymmetry of the forward and reverse transitions in shape-memory materials. Planes A; Vives E J Phys Condens Matter; 2017 Aug; 29(33):334001. PubMed ID: 28604365 [TBL] [Abstract][Full Text] [Related]
3. Crystal symmetry and the reversibility of martensitic transformations. Bhattacharya K; Conti S; Zanzotto G; Zimmer J Nature; 2004 Mar; 428(6978):55-9. PubMed ID: 14999277 [TBL] [Abstract][Full Text] [Related]
4. Influence of the number of orientational domains on avalanche criticality in ferroelastic transitions. Porta M; Castán T; Saxena A; Planes A Phys Rev E; 2019 Dec; 100(6-1):062115. PubMed ID: 31962466 [TBL] [Abstract][Full Text] [Related]
6. Flooding transition in the topography of toppling surfaces of stochastic and rotational sandpile models. Ahmed JA; Santra SB Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031111. PubMed ID: 22587042 [TBL] [Abstract][Full Text] [Related]
7. Universality of algebraic decays in Hamiltonian systems. Cristadoro G; Ketzmerick R Phys Rev Lett; 2008 May; 100(18):184101. PubMed ID: 18518375 [TBL] [Abstract][Full Text] [Related]
8. Universality and criticality of a second-order granular solid-liquid-like phase transition. Castillo G; Mujica N; Soto R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012141. PubMed ID: 25679604 [TBL] [Abstract][Full Text] [Related]
9. Strong violation of critical phenomena universality: Wang-Landau study of the two-dimensional Blume-Capel model under bond randomness. Malakis A; Berker AN; Hadjiagapiou IA; Fytas NG Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011125. PubMed ID: 19257019 [TBL] [Abstract][Full Text] [Related]
10. Quantum effects on criticality of an Ising model in scale-free networks: Beyond mean-field universality class. Yi H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):012103. PubMed ID: 20365414 [TBL] [Abstract][Full Text] [Related]
11. Phase transitions in scale-free neural networks: departure from the standard mean-field universality class. Aldana M; Larralde H Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066130. PubMed ID: 15697457 [TBL] [Abstract][Full Text] [Related]
12. Nonlocal product rules for percolation. Reis SD; Moreira AA; Andrade JS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041112. PubMed ID: 22680425 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature criticality of martensitic transformations of Cu nanoprecipitates in α-Fe. Erhart P; Sadigh B Phys Rev Lett; 2013 Jul; 111(2):025701. PubMed ID: 23889419 [TBL] [Abstract][Full Text] [Related]
14. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Korniss G; White CJ; Rikvold PA; Novotny MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327 [TBL] [Abstract][Full Text] [Related]
15. Persistence in nonequilibrium surface growth. Constantin M; Dasgupta C; Chatraphorn PP; Majumdar SN; Sarma SD Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061608. PubMed ID: 15244586 [TBL] [Abstract][Full Text] [Related]
16. Analytical and numerical study of the non-linear noisy voter model on complex networks. Peralta AF; Carro A; San Miguel M; Toral R Chaos; 2018 Jul; 28(7):075516. PubMed ID: 30070524 [TBL] [Abstract][Full Text] [Related]
17. Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems. Dashti-Naserabadi H; Najafi MN Phys Rev E; 2017 Oct; 96(4-1):042115. PubMed ID: 29347586 [TBL] [Abstract][Full Text] [Related]
18. Geometric critical exponents in classical and quantum phase transitions. Kumar P; Sarkar T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042145. PubMed ID: 25375476 [TBL] [Abstract][Full Text] [Related]
19. Quantum criticality in chains of planar rotors with dipolar interactions. Serwatka T; Roy PN J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38465677 [TBL] [Abstract][Full Text] [Related]
20. Percolation model with continuously varying exponents. Andrade RF; Herrmann HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042122. PubMed ID: 24229131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]