BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28208576)

  • 1. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology.
    Wu L; Qiu L; Zhang H; Sun J; Hu X; Wang B
    Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28208576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of preceding crop on Fusarium species and mycotoxin contamination of wheat grains.
    Qiu J; Dong F; Yu M; Xu J; Shi J
    J Sci Food Agric; 2016 Oct; 96(13):4536-41. PubMed ID: 26867679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cycling temperatures on the production of deoxynivalenol and zearalenone by Fusarium graminearum NRRL 5883.
    Ryu D; Bullerman LB
    J Food Prot; 1999 Dec; 62(12):1451-5. PubMed ID: 10606150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deoxynivalenol, acetyl deoxynivalenol, and zearalenone formation by Canadian isolates of Fusarium graminearum on solid substrates.
    Greenhalgh R; Neish GA; Miller JD
    Appl Environ Microbiol; 1983 Sep; 46(3):625-9. PubMed ID: 6227284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean.
    Garcia D; Barros G; Chulze S; Ramos AJ; Sanchis V; Marín S
    J Sci Food Agric; 2012 Dec; 92(15):2952-9. PubMed ID: 22555960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic and anaerobic in vitro testing of feed additives claiming to detoxify deoxynivalenol and zearalenone.
    Hahn I; Kunz-Vekiru E; Twarużek M; Grajewski J; Krska R; Berthiller F
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(6):922-33. PubMed ID: 25793414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of temperature and soil fauna on the reduction and leaching of deoxynivalenol and zearalenone from Fusarium graminearum-infected maize stubbles.
    Meyer-Wolfarth F; Oldenburg E; Meiners T; Muñoz K; Schrader S
    Mycotoxin Res; 2021 Aug; 37(3):249-263. PubMed ID: 34173210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusarium mycotoxins in Lithuanian cereals from the 2004-2005 harvests.
    Mankeviciene A; Butkute B; Dabkevicius Z; Suproniene S
    Ann Agric Environ Med; 2007; 14(1):103-7. PubMed ID: 17655186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential effects of antioxidant feed additives in mitigating the adverse effects of corn naturally contaminated with Fusarium mycotoxins on antioxidant systems in the intestinal mucosa, plasma, and liver in weaned pigs.
    Van Le Thanh B; Lemay M; Bastien A; Lapointe J; Lessard M; Chorfi Y; Guay F
    Mycotoxin Res; 2016 May; 32(2):99-116. PubMed ID: 27021614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Natural occurrence of masked deoxynivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2008].
    Li FQ; Yu CC; Shao B; Wang W; Yu HX
    Zhonghua Yu Fang Yi Xue Za Zhi; 2011 Jan; 45(1):57-63. PubMed ID: 21418821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Relation between the production of deoxynivalenol and zearalenone and the mycelial growth of Fusarium graminearum on solid natural substrates].
    Lori GA; Henning CP; Violante A; Alippi HE; Varsavsky E
    Microbiologia; 1990 Dec; 6(2):76-82. PubMed ID: 2151302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residues of zearalenone (ZEN), deoxynivalenol (DON) and their metabolites in plasma of dairy cows fed Fusarium contaminated maize and their relationships to performance parameters.
    Winkler J; Kersten S; Meyer U; Engelhardt U; Dänicke S
    Food Chem Toxicol; 2014 Mar; 65():196-204. PubMed ID: 24361404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling mycotoxin formation by Fusarium graminearum in maize in The Netherlands.
    van Asselt ED; Booij CJ; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1572-80. PubMed ID: 22725695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of gamma radiation and substrate on mycotoxin production by Fusarium culmorum IMI 309344.
    O'Neill K; Damoglou AP; Patterson MF
    J Appl Bacteriol; 1996 Nov; 81(5):518-24. PubMed ID: 8939030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusarium mycotoxins in cereals harvested from Hungarian fields.
    Tima H; Brückner A; Mohácsi-Farkas C; Kiskó G
    Food Addit Contam Part B Surveill; 2016 Jun; 9(2):127-31. PubMed ID: 26892197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of mycotoxins by selected Fusarium graminearum and F. crookwellense isolates.
    Sydenham EW; Marasas WF; Thiel PG; Shephard GS; Nieuwenhuis JJ
    Food Addit Contam; 1991; 8(1):31-41. PubMed ID: 1826664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycotoxin production by Fusarium species isolated from New Zealand maize fields.
    Hussein HM; Baxter M; Andrew IG; Franich RA
    Mycopathologia; 1991 Jan; 113(1):35-40. PubMed ID: 1826540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycological survey of Korean cereals and production of mycotoxins by Fusarium isolates.
    Lee US; Jang HS; Tanaka T; Toyasaki N; Sugiura Y; Oh YJ; Cho CM; Ueno Y
    Appl Environ Microbiol; 1986 Dec; 52(6):1258-60. PubMed ID: 2947538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of trichothecenes and zearalenone by isolates of Fusarium spp. from Argentinian maize.
    Molto GA; Gonzalez HH; Resnik SL; Pereyra Gonzalez A
    Food Addit Contam; 1997 Apr; 14(3):263-8. PubMed ID: 9135723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants.
    Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F
    Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.