BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 28208831)

  • 1. Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer's Disease.
    Loureiro JA; Andrade S; Duarte A; Neves AR; Queiroz JF; Nunes C; Sevin E; Fenart L; Gosselet F; Coelho MA; Pereira MC
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28208831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RVG29-Functionalized Lipid Nanoparticles for Quercetin Brain Delivery and Alzheimer's Disease.
    Pinheiro RGR; Granja A; Loureiro JA; Pereira MC; Pinheiro M; Neves AR; Reis S
    Pharm Res; 2020 Jul; 37(7):139. PubMed ID: 32661727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer's disease.
    Yin T; Yang L; Liu Y; Zhou X; Sun J; Liu J
    Acta Biomater; 2015 Oct; 25():172-83. PubMed ID: 26143603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomedicine for the treatment of Alzheimer's disease.
    Gregori M; Masserini M; Mancini S
    Nanomedicine (Lond); 2015; 10(7):1203-18. PubMed ID: 25929574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer's disease.
    Pinheiro RGR; Granja A; Loureiro JA; Pereira MC; Pinheiro M; Neves AR; Reis S
    Eur J Pharm Sci; 2020 May; 148():105314. PubMed ID: 32200044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin Delivery and in Vitro Biological Evaluation of Trans-Resveratrol-Loaded Solid Lipid Nanoparticles for Skin Disorder Therapies.
    Rigon RB; Fachinetti N; Severino P; Santana MH; Chorilli M
    Molecules; 2016 Jan; 21(1):E116. PubMed ID: 26805794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of resveratrol and resveratrol-functional selenium nanoparticles: Inhibiting amyloid β aggregation and reactive oxygen species formation properties.
    Yang L; Wang W; Chen J; Wang N; Zheng G
    J Biomed Mater Res A; 2018 Dec; 106(12):3034-3041. PubMed ID: 30295993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of Vitis vinifera L. phenolic compounds on a blood-brain barrier culture model: Expression of leptin receptors and protection against cytokine-induced damage.
    Ardid-Ruiz A; Harazin A; Barna L; Walter FR; Bladé C; Suárez M; Deli MA; Aragonès G
    J Ethnopharmacol; 2020 Jan; 247():112253. PubMed ID: 31562952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diplazium esculentum (Retz.) Sw. reduces BACE-1 activities and amyloid peptides accumulation in Drosophila models of Alzheimer's disease.
    Kunkeaw T; Suttisansanee U; Trachootham D; Karinchai J; Chantong B; Potikanond S; Inthachat W; Pitchakarn P; Temviriyanukul P
    Sci Rep; 2021 Dec; 11(1):23796. PubMed ID: 34893659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in the Drug Development for the Treatment of Alzheimer's Disease Especially on Inhibition of Amyloid-peptide Aggregation.
    Liu Y; Cong L; Han C; Li B; Dai R
    Mini Rev Med Chem; 2021; 21(8):969-990. PubMed ID: 33245270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment.
    Loureiro JA; Gomes B; Fricker G; Coelho MAN; Rocha S; Pereira MC
    Colloids Surf B Biointerfaces; 2016 Sep; 145():8-13. PubMed ID: 27131092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic ApoE-Reconstituted High Density Lipoprotein Nanocarrier for Blood-Brain Barrier Penetration and Amyloid Beta-Targeting Drug Delivery.
    Song Q; Song H; Xu J; Huang J; Hu M; Gu X; Chen J; Zheng G; Chen H; Gao X
    Mol Pharm; 2016 Nov; 13(11):3976-3987. PubMed ID: 27700119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive stilbenes from Vitis vinifera grapevine shoots extracts.
    Chaher N; Arraki K; Dillinseger E; Temsamani H; Bernillon S; Pedrot E; Delaunay JC; Mérillon JM; Monti JP; Izard JC; Atmani D; Richard T
    J Sci Food Agric; 2014 Mar; 94(5):951-4. PubMed ID: 23929536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer's disease mouse.
    Wang YJ; Thomas P; Zhong JH; Bi FF; Kosaraju S; Pollard A; Fenech M; Zhou XF
    Neurotox Res; 2009 Jan; 15(1):3-14. PubMed ID: 19384583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexahydropyrrolo[2,3-
    Doens D; Valdés-Tresanco ME; Vasquez V; Carreira MB; De La Guardia Y; Stephens DE; Nguyen VD; Nguyen VT; Gu J; Hegde ML; Larionov OV; Valiente PA; Lleonart R; Fernández PL
    ACS Chem Neurosci; 2019 Oct; 10(10):4250-4263. PubMed ID: 31545596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E.
    Neves AR; Queiroz JF; Reis S
    J Nanobiotechnology; 2016 Apr; 14():27. PubMed ID: 27061902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ability of selenium species to inhibit metal-induced Aβ aggregation involved in the development of Alzheimer's disease.
    Vicente-Zurdo D; Romero-Sánchez I; Rosales-Conrado N; León-González ME; Madrid Y
    Anal Bioanal Chem; 2020 Sep; 412(24):6485-6497. PubMed ID: 32322953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation.
    Liu Y; Pukala TL; Musgrave IF; Williams DM; Dehle FC; Carver JA
    Bioorg Med Chem Lett; 2013 Dec; 23(23):6336-40. PubMed ID: 24157371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Strategies for Modulating Aβ Aggregation with Multifunctional Agents.
    Du Z; Li M; Ren J; Qu X
    Acc Chem Res; 2021 May; 54(9):2172-2184. PubMed ID: 33881820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer's disease animal model by reducing Tau hyperphosphorylation.
    Vakilinezhad MA; Amini A; Akbari Javar H; Baha'addini Beigi Zarandi BF; Montaseri H; Dinarvand R
    Daru; 2018 Dec; 26(2):165-177. PubMed ID: 30386982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.