These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28209025)

  • 21. Light-Powered Directional Nanofluidic Ion Transport in Kirigami-Made Asymmetric Photonic-Ionic Devices.
    Jia M; Kong X; Wang L; Zhang Y; Quan D; Ding L; Lu D; Jiang L; Guo W
    Small; 2020 Jan; 16(1):e1905557. PubMed ID: 31805218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased Flexibility in Lab-on-Chip Design with a Polymer Patchwork Approach.
    Pezzuoli D; Angeli E; Repetto D; Guida P; Firpo G; Repetto L
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31775220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanophotonic integration in state-of-the-art CMOS foundries.
    Orcutt JS; Khilo A; Holzwarth CW; Popović MA; Li H; Sun J; Bonifield T; Hollingsworth R; Kärtner FX; Smith HI; Stojanović V; Ram RJ
    Opt Express; 2011 Jan; 19(3):2335-46. PubMed ID: 21369052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of Infrared-Compatible Nanofluidic Devices for Plasmon-Enhanced Infrared Absorption Spectroscopy.
    Le THH; Matsushita T; Ohta R; Shimoda Y; Matsui H; Kitamori T
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33266007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure.
    Xu D; Chen KP; Ohlinger K; Lin Y
    Nanotechnology; 2011 Jan; 22(3):035303. PubMed ID: 21149952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding.
    Mao P; Han J
    Lab Chip; 2005 Aug; 5(8):837-44. PubMed ID: 16027934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental demonstration on structure-parameter dependence of photonic crystal optical spectrum.
    Wang C; Kan Q; Xu X; Du W; Chen H
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1045-7. PubMed ID: 19441451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable and Transfer-Free Fabrication of MoS
    Hammer S; Mangold HM; Nguyen AE; Martinez-Ta D; Naghibi Alvillar S; Bartels L; Krenner HJ
    Sci Rep; 2017 Aug; 7(1):7251. PubMed ID: 28775371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated Si
    Wu K; Zhang Q; Poon AW
    Opt Express; 2021 Aug; 29(16):24750-24764. PubMed ID: 34614824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities.
    Barth M; Kouba J; Stingl J; Löchel B; Benson O
    Opt Express; 2007 Dec; 15(25):17231-40. PubMed ID: 19551016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.
    Agirregabiria M; Blanco FJ; Berganzo J; Arroyo MT; Fullaondo A; Mayora K; Ruano-López JM
    Lab Chip; 2005 May; 5(5):545-52. PubMed ID: 15856093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanofluidic chip for liquid TEM cell fabricated by parylene and silicon nitride direct bonding.
    Jang H; Kang IS; Kim J; Kim J; Cha YJ; Yoon DK; Lee W
    Nanotechnology; 2017 Sep; 28(37):375301. PubMed ID: 28737164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and Fabrication of a Visible-Light-Compatible, Polymer-Based Photonic Crystal Resonator and Waveguide for Sensing Applications.
    Sun J; Maeno K; Aki S; Sueyoshi K; Hisamoto H; Endo T
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CMOS compatible athermal silicon photonic filters based on hydrogenated amorphous silicon.
    Trita A; Thomas A; Rickman A
    Opt Express; 2022 May; 30(11):19311-19319. PubMed ID: 36221712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monolithic CMOS-compatible zero-index metamaterials.
    Vulis DI; Li Y; Reshef O; Camayd-Muñoz P; Yin M; Kita S; Lončar M; Mazur E
    Opt Express; 2017 May; 25(11):12381-12399. PubMed ID: 28786594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local nanofluidic light sources in silicon photonic crystal microcavities.
    Vignolini S; Riboli F; Intonti F; Belotti M; Gurioli M; Chen Y; Colocci M; Andreani LC; Wiersma DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):045603. PubMed ID: 18999486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Top-down fabrication of fully CMOS-compatible silicon nanowire arrays and their integration into CMOS Inverters on plastic.
    Lee M; Jeon Y; Moon T; Kim S
    ACS Nano; 2011 Apr; 5(4):2629-36. PubMed ID: 21355599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fully embedded photonic crystal cavity with Q=0.6 million fabricated within a full-process CMOS multiproject wafer.
    Dodane D; Bourderionnet J; Combrié S; de Rossi A
    Opt Express; 2018 Aug; 26(16):20868-20877. PubMed ID: 30119393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.
    Uba FI; Hu B; Weerakoon-Ratnayake K; Oliver-Calixte N; Soper SA
    Lab Chip; 2015 Feb; 15(4):1038-49. PubMed ID: 25511610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.