These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 28209761)
1. Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai-Tibetan Plateau. Zhang D; Yu M; Hu P; Peng S; Liu Y; Li W; Wang C; He S; Zhai W; Xu Q; Chen L G3 (Bethesda); 2017 Apr; 7(4):1267-1276. PubMed ID: 28209761 [TBL] [Abstract][Full Text] [Related]
2. Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia. Qi D; Chao Y; Zhao Y; Xia M; Wu R Fish Physiol Biochem; 2018 Apr; 44(2):557-571. PubMed ID: 29230594 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the erythropoietin of a Tibetan Plateau schizothoracine fish (Gymnocypris dobula) reveals enhanced cytoprotection function in hypoxic environments. Xu Q; Zhang C; Zhang D; Jiang H; Peng S; Liu Y; Zhao K; Wang C; Chen L BMC Evol Biol; 2016 Jan; 16():11. PubMed ID: 26768152 [TBL] [Abstract][Full Text] [Related]
4. Polyphyletic origins of schizothoracine fish (Cyprinidae, Osteichthyes) and adaptive evolution in their mitochondrial genomes. Yonezawa T; Hasegawa M; Zhong Y Genes Genet Syst; 2014; 89(4):187-91. PubMed ID: 25747043 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic signature of rapidly evolving immune genes in a highland fish. Tong C; Li M Fish Shellfish Immunol; 2020 Feb; 97():587-592. PubMed ID: 31891809 [TBL] [Abstract][Full Text] [Related]
6. Prevalence and genetic diversity of Echinorhynchus gymnocyprii (Acanthocephala: Echinorhynchidae) in schizothoracine fishes (Cyprinidae: Schizothoracinae) in Qinghai-Tibetan Plateau, China. Lei MT; Cai JZ; Li CH; Fu Y; Sun J; Ma DD; Li YP; Zhang YM Parasit Vectors; 2020 Jul; 13(1):357. PubMed ID: 32690075 [TBL] [Abstract][Full Text] [Related]
7. High altitude adaptation of the schizothoracine fishes (Cyprinidae) revealed by the mitochondrial genome analyses. Li Y; Ren Z; Shedlock AM; Wu J; Sang L; Tersing T; Hasegawa M; Yonezawa T; Zhong Y Gene; 2013 Apr; 517(2):169-78. PubMed ID: 23328645 [TBL] [Abstract][Full Text] [Related]
8. Genomic signature of highland adaptation in fish: a case study in Tibetan Schizothoracinae species. Tong C; Tian F; Zhao K BMC Genomics; 2017 Dec; 18(1):948. PubMed ID: 29207953 [TBL] [Abstract][Full Text] [Related]
9. Adaptive Evolution of the Zhang C; Tong C; Ludwig A; Tang Y; Liu S; Zhang R; Feng C; Li G; Peng Z; Zhao K Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30262767 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial cytochrome b sequence variation and phylogenetics of the highly specialized Schizothoracine fishes (Teleostei: Cyprinidae) in the Qinghai-Tibet plateau. Qi D; Li T; Zhao X; Guo S; Li J Biochem Genet; 2006 Jun; 44(5-6):270-85. PubMed ID: 16941235 [TBL] [Abstract][Full Text] [Related]
11. Genomic Signature of Shifts in Selection and Alkaline Adaptation in Highland Fish. Tong C; Li M; Tang Y; Zhao K Genome Biol Evol; 2021 May; 13(5):. PubMed ID: 33892511 [TBL] [Abstract][Full Text] [Related]
12. Analysis of hypoxia-inducible factor alpha polyploidization reveals adaptation to Tibetan Plateau in the evolution of schizothoracine fish. Guan L; Chi W; Xiao W; Chen L; He S BMC Evol Biol; 2014 Aug; 14():192. PubMed ID: 25205386 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive transcriptomic analysis of Tibetan Schizothoracinae fish Gymnocypris przewalskii reveals how it adapts to a high altitude aquatic life. Tong C; Fei T; Zhang C; Zhao K BMC Evol Biol; 2017 Mar; 17(1):74. PubMed ID: 28274203 [TBL] [Abstract][Full Text] [Related]
14. Hb adaptation to hypoxia in high-altitude fishes: Fresh evidence from schizothoracinae fishes in the Qinghai-Tibetan Plateau. Lei Y; Yang L; Zhou Y; Wang C; Lv W; Li L; He S Int J Biol Macromol; 2021 Aug; 185():471-484. PubMed ID: 34214574 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive transcriptome analysis reveals accelerated genic evolution in a Tibet fish, Gymnodiptychus pachycheilus. Yang L; Wang Y; Zhang Z; He S Genome Biol Evol; 2014 Dec; 7(1):251-61. PubMed ID: 25543049 [TBL] [Abstract][Full Text] [Related]
16. Genetic structure and demographic history of the endangered and endemic schizothoracine fish Gymnodiptychus pachycheilus in Qinghai-Tibetan Plateau. Su J; Ji W; Wei Y; Zhang Y; Gleeson DM; Lou Z; Ren J Zoolog Sci; 2014 Aug; 31(8):515-22. PubMed ID: 25088592 [TBL] [Abstract][Full Text] [Related]
17. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes. Wang Y; Yang L; Zhou K; Zhang Y; Song Z; He S Genome Biol Evol; 2015 Oct; 7(11):2970-82. PubMed ID: 26454018 [TBL] [Abstract][Full Text] [Related]
18. Molecular characterization and expression changes of cytoglobin genes in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi. Chao Y; Xia M; Wu R; Chen Q; Zheng Z; Qi D Fish Physiol Biochem; 2019 Jun; 45(3):863-872. PubMed ID: 30406573 [TBL] [Abstract][Full Text] [Related]
19. Adaptive evolution of interferon regulatory factors is not correlated with body scale reduction or loss in schizothoracine fish. Qi D; Chao Y; Liang J; Gao Q; Wu R; Mather I; Zhao Y; Chen Q Fish Shellfish Immunol; 2018 Feb; 73():145-151. PubMed ID: 29246809 [TBL] [Abstract][Full Text] [Related]
20. Hypoxia-inducible factor 1α from a high-altitude fish enhances cytoprotection and elevates nitric oxide production in hypoxic environment. Wang C; Wu X; Hu X; Jiang H; Chen L; Xu Q Fish Physiol Biochem; 2020 Feb; 46(1):39-49. PubMed ID: 31595407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]