These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. FtsZ dynamics in bacterial division: What, how, and why? Barrows JM; Goley ED Curr Opin Cell Biol; 2021 Feb; 68():163-172. PubMed ID: 33220539 [TBL] [Abstract][Full Text] [Related]
11. FtsA Regulates Z-Ring Morphology and Cell Wall Metabolism in an FtsZ C-Terminal Linker-Dependent Manner in Caulobacter crescentus. Barrows JM; Sundararajan K; Bhargava A; Goley ED J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31932314 [TBL] [Abstract][Full Text] [Related]
12. Peptidoglycan synthesis drives a single population of septal cell wall synthases during division in Bacillus subtilis. Whitley KD; Grimshaw J; Roberts DM; Karinou E; Stansfeld PJ; Holden S Nat Microbiol; 2024 Apr; 9(4):1064-1074. PubMed ID: 38480901 [TBL] [Abstract][Full Text] [Related]
13. A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW. Yang X; McQuillen R; Lyu Z; Phillips-Mason P; De La Cruz A; McCausland JW; Liang H; DeMeester KE; Santiago CC; Grimes CL; de Boer P; Xiao J Nat Microbiol; 2021 May; 6(5):584-593. PubMed ID: 33495624 [TBL] [Abstract][Full Text] [Related]
14. The speed of FtsZ treadmilling is tightly regulated by membrane binding. García-Soriano DA; Heermann T; Raso A; Rivas G; Schwille P Sci Rep; 2020 Jun; 10(1):10447. PubMed ID: 32591587 [TBL] [Abstract][Full Text] [Related]
15. Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism. McCausland JW; Yang X; Squyres GR; Lyu Z; Bruce KE; Lamanna MM; Söderström B; Garner EC; Winkler ME; Xiao J; Liu J Nat Commun; 2021 Jan; 12(1):609. PubMed ID: 33504807 [TBL] [Abstract][Full Text] [Related]
16. A Polymerization-Associated Structural Switch in FtsZ That Enables Treadmilling of Model Filaments. Wagstaff JM; Tsim M; Oliva MA; García-Sanchez A; Kureisaite-Ciziene D; Andreu JM; Löwe J mBio; 2017 May; 8(3):. PubMed ID: 28465423 [TBL] [Abstract][Full Text] [Related]
17. FzlA, an essential regulator of FtsZ filament curvature, controls constriction rate during Caulobacter division. Lariviere PJ; Szwedziak P; Mahone CR; Löwe J; Goley ED Mol Microbiol; 2018 Jan; 107(2):180-197. PubMed ID: 29119622 [TBL] [Abstract][Full Text] [Related]
18. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. Fenton AK; Gerdes K EMBO J; 2013 Jul; 32(13):1953-65. PubMed ID: 23756461 [TBL] [Abstract][Full Text] [Related]
19. FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima--quantitation, GTP hydrolysis, and assembly. Lu C; Stricker J; Erickson HP Cell Motil Cytoskeleton; 1998; 40(1):71-86. PubMed ID: 9605973 [TBL] [Abstract][Full Text] [Related]
20. Glutamate 83 and arginine 85 of helix H3 bend are key residues for FtsZ polymerization, GTPase activity and cellular viability of Escherichia coli: lateral mutations affect FtsZ polymerization and E. coli viability. Shin JY; Vollmer W; Lagos R; Monasterio O BMC Microbiol; 2013 Feb; 13():26. PubMed ID: 23384248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]